首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using a pump and test beam technique in the frequency domain with pump pulses in the nanosecond time range, the nonlinear transmission properties were investigated at room temperature in photosystem (PS) II membrane fragments and isolated light-harvesting chlorophyll a/b-protein preparations (LHC II preparations). In LHC II preparations and PS II membrane fragments, respectively, pump pulses of 620 nm and 647 nm cause a transmission decrease limited to a wavelength region in the nearest vicinity of the pump pulse wavelength (full width at half maximum ' 0.24 nm). In contrast, at 670 nm neither a transmission decrease nor a narrow band feature were observed. The data obtained for PS II membrane fragments and LHC II preparations at shorter wavelengths (620 nm, 647 nm) were interpreted in terms of excited state absorption of whole pigment-protein clusters within the light-harvesting antenna of photosystem II. The interpretation of the small transmission changes as homogeneously broadened lines led to a transversal relaxation time for chlorophyll in the clusters of about 4 ps.  相似文献   

2.
Polyclonal antibodies against four different apoproteins of either the chlorophyll (Chl) a/b light-harvesting antenna of photosystem I or II, or a chlorophyll-protein complex homologous to CP26 from Chlamydomonas reinhardtii, crossreact with11–13 thylakoid proteins of Chlamydomonas, Euglena gracilis and higher plants. The number of antigenically-related proteins correlates with the quantity of light-harvesting chlorophyll-protein complex (LHC) gene types that have been sequenced in higher plants. The antibodies also react specifically with Chi a/c-binding proteins of three diatoms and Coccolithophora sp. as determined by immunoblot and Ouchterlony assays. Four to six crossreacting proteins are observed in each chromophyte species and a functional role for some can be deduced by antibody reactivity. It appears that despite major differences in the structures of their pigment ligands, at least some domains of Chl-binding LHC apoproteins have been conserved during their evolution, possibly functioning in protein: protein, as opposed to pigment: protein, interactions in photosynthetic membranes.  相似文献   

3.
A photosystem I (PS I) holocomplex was obtained from barley by ultracentrifugation of PS I-enriched stroma lamellae on sucrose gradients. Further solubilization with glycosidic surfactants followed by Deriphat-poly-acrylamide gel electrophoresis (PAGE) fractionated the holocomplex into its core complex (CC I) and individual light-harvesting I (LHC I) pigment-protein subcomplexes. The LHC I contains chlorophyll a, all of the chlorophyll A of PS I and xanthophylls but no carotenes. Sodium dodecylsulfate PAGE analysis of the subcomplexes shows that barley LHC I is composed of at least five apoproteins having sizes between 11 and 24 kDa. Isolation of a 17 kDa LHC Ic component by Deriphat-PAGE shows it to be a photosynthetic pigment-protein. Room-temperature absorption spectra indicate that LHC Ic is enriched in chlorophyll a in comparison to the LHC Ia and Ib components. The LHC Ic apoprotein is shown to be distinct from the subunit III and IV polypeptides of CC I. Analysis of PS I fractions obtained from sucrose gradients as well as from Deriphat-PAGE indicates that in higher plants an oligomeric structure of the PS I entity exists in vitro.  相似文献   

4.
Abstract The short-term adaptation of intact leaves to an increase in light intensity was studied by an analysis of chlorophyll fluorescence and oxygen evolution monitored by photoacoustics. An increase in light intensity led to an oxygen “gush”. This “gush” was followed by a large (up to 120%) biphasic increase in the yield of oxygen evolution characterized by a fast phase (T = 0.5–2 min) and a slow phase (T = 4–20 min). The fast phase of the increase in oxygen yield was coupled to a decrease of fluorescence, whereas the slow phase was accompanied by a parallel fluorescence increase. A comparison of fluorescence parameters with oxygen yield indicates that the slow phase of the increase in oxygen yield was coupled to an increase in the antenna size of photosystem II. The slow phase was not inhibited by the uncoupler Nigericin but it was absent in chlorophyll-b-less barley mutants dencient in the light harvesting chlorophyll a/b protein complex of photosystem II (LHC II). These experiments indicate that changes in the LHC II mediated energy distribution, which occur in the time-range of several minutes, are involved in the adaptation to changing light intensities. Moreover, electrophoretic analysis of 32P orthophosphate labeled leaf discs adapted to low and high light intensities suggests that the slow phase of the increase in oxygen evolution involves dephosphorylation of the 25 kDa polypeptide of LHC II, by a small extent of 12%. The trigger for the slow phase of the increase in oxygen yield does not involve the oxidation of the plastoquinone pool. It was found that in response to the increased light intensity, the plastoquinone pool became more reduced as judged by model calculations. Experiments with the uncoupler Nigericin suggest that the control of the slow phase of adaptation to increased light intensity was also not exerted by the pH gradient across the thylakoid membrane. The similarities between the adaptation to increased light intensity and the state II to state I transition suggest that both adaptation phenomena involve LHC II dephosphorylation possibly triggered by the cytochrome b6/f complex.  相似文献   

5.
Abstract— The short-term adaptation of intact leaves to an increase in light intensity was studied by an analysis of chlorophyll fluorescence and oxygen evolution monitored by photoacoustics. An increase in light intensity led to an oxygen “gush”. This “gush” was followed by a large (up to 120%) biphasic increase in the yield of oxygen evolution characterized by a fast phase (T = 0.5–2 min) and a slow phase (T = 4–20 min). The fast phase of the increase in oxygen yield was coupled to a decrease of fluorescence, whereas the slow phase was accompanied by a parallel fluorescence increase. A comparison of fluorescence parameters with oxygen yield indicates that the slow phase of the increase in oxygen yield was coupled to an increase in the antenna size of photosystem II. The slow phase was not inhibited by the uncoupler Nigericin but it was absent in chlorophyll-b-less barley mutants deñcient in the light harvesting chlorophyll a/b protein complex of photosystem II (LHC II). These experiments indicate that changes in the LHC II mediated energy distribution, which occur in the time-range of several minutes, are involved in the adaptation to changing light intensities. Moreover, electrophoretic analysis of 32P orthophosphate labeled leaf discs adapted to low and high light intensities suggests that the slow phase of the increase in oxygen evolution involves dephosphorylation of the 25 kDa polypeptide of LHC II, by a small extent of 12%. The trigger for the slow phase of the increase in oxygen yield does not involve the oxidation of the plastoquinone pool. It was found that in response to the increased light intensity, the plastoquinone pool became more reduced as judged by model calculations. Experiments with the uncoupler Nigericin suggest that the control of the slow phase of adaptation to increased light intensity was also not exerted by the pH gradient across the thylakoid membrane. The similarities between the adaptation to increased light intensity and the state II to state I transition suggest that both adaptation phenomena involve LHC II dephosphorylation possibly triggered by the cytochrome b6/f complex.  相似文献   

6.
Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (ΔA) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet–triplet absorption band (ΔA>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chla) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chla, is shown to cause a parallel decline in the triplet formation yield of Chla; on the other hand, the efficiency (100%) of Chla-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chla by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.  相似文献   

7.
A major light-harvesting complex (LHC) has been obtained from thylakoids of Amphidinium carterae solubilized with digitonin or decylmaltoside and separated by sucrose-gradient centrifugation. The digitonin-LHC forms a dark brown band at -17% sucrose and the decylmaltoside LHC one at -7% sucrose. Excellent energy transfer is retained from chlorophyll c and carotenoid to chlorophyll a. Absorbance and fluorescence excitation spectra show the existence of two major forms of chlorophyll c, one absorbing at 634 nm and the other at 649 nm. Linear dichroism spectra show the Qy transition of both forms of chlorophyll c to be aligned at <35° to the membrane plane. On sodium dodecylsulfate polyacrylamide gels the complex resolves as a single band of 19 kDa. A partial amino acid sequence shows the N-terminus to be unblocked but modified; there is a persistent ambiguity of Ser/Asn at residue 4 and evidence for multiple but very similar polypeptides within the 19 kDa band. The peptide has strong identity with the N-terminal regions of LHC from Phaeodactylum and Pavlova and LHC 1 of higher plants. Antibodies to the 19 kDa peptide react weakly with LHC of brown algae, diatoms and Prymnesiophytes but not with those of higher plants or Cryptophytes.  相似文献   

8.
Abstract— The action of Triton X-100 upon photosynthetic membranes which are devoid of carotenoids produces a small Photosystem I particle (HP700 particle) which is active in N ADP photoreduction and has a [Chl]/[P700] ratio of 30. The properties of the HP700 particle indicate that it is a reaction center complex which is served by an accessory complex containing the additional light-harvesting chlorophyll of Photosystem I as well as the cytochromes and plastoquinone. When Photosystem II particles obtained by the action of Triton X-100 are further washed with a solution 0.5 M in sucrose and 0.05 M in Tris buffer (pH 8.0), chlorophyll-containing material is released. After centrifugation, the supernatant contains about 1 per cent of the chlorophyll and contains three types of particles which can be separated by sucrose density gradient centrifugation. One of these particles, designated TSF-2b, has the same pigment composition as the original Photosystem II fragment, contains cytochrome 559, and shows Photosystem II activity (DCMU-sensitive diphenylcarbazide-supported photoreduction of 2,6-dichlorophenolindophenol). The other two particles (TSF-2a and TSF-2a′) have a [Chl a]/[Chl b] ratio of 8, have a low concentration of xanthophylls, and show a [Chl]/[Cyt 5591 ratio of about 20. Only the TSF-2a particle is active in the Photosystem II reaction described above. On the basis of these data, it is proposed that the Photosystem II unit consists of a reaction center complex which contains Chl a, Cyt 559, and an acceptor for the photochemical reaction. The reaction center complex would be served by an accessory complex which contains the light-harvesting pigments, Chl a. Chi b, and xanthophyils.  相似文献   

9.
Abstract— Growing wheat seedlings in the presence of BASF 13.338 [4-chloro-5-dimethylamino-2-phenyl-3(2H)pyridazinone], a PS II inhibitor of the pyridazinone group, brought about notable changes in the structure and functioning of photosynthetic apparatus. In BASF 13.338 treated plants, there was a decrease in the ratio of Chi a/Chl b, an increase in xanthophyll/carotene ratio and an increase in the content of Cyt b 559 (HP + LP). Chl/p700 ratio increased when measured with the isolated chloroplasts but not with the isolated PS I particles of the treated plants. The SDS-PAGE pattern of chloroplast preparations showed an increase in the CPII/CP I ratio. The F685/F740 ratio in the emission spectrum of chloroplasts at -196°C increased. The difference absorption spectrum of chloroplasts between the control and the treated plants showed a relative increase of a chlorophyll component with a peak absorption at 676 nm and a relative decrease of a chlorophyll component with a peak absorption at 692 nm for the treated plants. The excitation spectra of these chloroplast preparations were similar. Chloroplasts from the treated plants exhibited a greater degree of grana stacking as measured by the chlorophyll content in the 10 K pellet. The rate of electron transfer through photosystem II at saturating light intensity in chloroplast thylakoids isolated from the treated plants increased (by 50%) optimally at treatment of 125 μM BASF 13.338 as compared to the control. This increase was accompanied by an increase in (a) I50 value of DCMU inhibition of photosystem II electron transfer; (b) the relative quantum yield of photosystem II electron transfer; (c) the magnitude of C550 absorbance change; and (d) the rate of carotenoid photobleaching. These observations were interpreted in terms of preferential synthesis of photosystem II in the treated plants. The rate of electron transfer through photosystems I and through the whole chain (H2O → methyl viologen) also increased, due to an additional effect of BASF 13.338, namely, an increase in the rate of electron transfer through the rate limiting step (between plastoquinol and cytochrome f). This was linked to an enhanced level of functional cytochrome f. The increase in the overall rate of electron transfer occurred in spite of a decrease in the content of photosystem I relative to photosystem II. Treatment with higher concentrations (> 125 μM) of BASF 13.338 caused a further increase in the level of cytochrome f, but the rate of electron transfer was no greater than in the control. This was due to an inhibition of electron transfer at several sites in the chain.  相似文献   

10.
Abstract— Dunaliella chloroplasts were fractionated according to C. Arntzen et al, Biochim. Biophys. Acta 256 , 85–107, 1972. The initial French-press treatment and differential centrifugation produced Fraction 1 (Fr 1) enriched in photosystem I activity and a heavier Fraction 2 (Fr 2). When Fr 2 was treated with digitonin followed by either gradient or differential centrifugation, two more fractions were recovered: Fr 1 g with a photosystem 1 activity similar to that of Fr 1, and Fr 2 g with very low photosystem II activity. Photosystem II activity was considerably lower in these Dunaliella chloroplasts and fractions than in spinach particles measured under the same conditions, but the relative activities between the fractions were similar to those for spinach. Fr 2 always had greater photosystem II activity than Fr 1, but the digitonin fractions were low and similar in photosystem II activity. Photosystem II activity was measured as the reduction of 2, 6–dichlorophenol indophenol (DCIP) with H2O, diphenylcarbazide (DPC) or Mn2+ as electron donor. The results indicated that exogenous manganous ion competed with H2O as an electron donor to photosystem II in broken chloroplasts initially, but after 10–15 s of illumination, the Mn3+ formed began to reoxidize DCIP and a cyclic reaction ensued. DPC and Mn2+ appeared to react at different sites. Computer-assisted curve analysis of the absorption spectrum of each fraction revealed four major component curves representing the absorbing forms of chlorophyll a at 663, 670, 679 and 684 nm seen in numerous other in vivo chlorophyll spectra (C. S. French et al., Plant Physiol. 49 , 421–429, 1972). However, Fr 2g had approx. 20 percent more of Ca663 and Ca670 and 10% more absorption by chl b than Fr 1 which correlated with the difference in photosystem II activity. On the long wavelength side, Fr 2 g had no Ca694 and almost no photosystem I activity. The results are not sufficient to answer the question of whether the photosystem I particle obtained from the original homogenate is significantly similar to or different from the corresponding fraction obtained from Fr 2 with digitonin.  相似文献   

11.
We describe a new fractionation method for intrinsic membrane proteins based on flat bed isoelectric focusing (IEF) in granulated gel. The characteristics of the separation in the presence of the non-ionic detergent dodecylmaltoside are considered. The method has been applied to the fractionation of chlorophyll a/b binding proteins from chloroplast grana membranes. Several Light Harvesting Complexes II (LHC II) have been resolved showing differences in their polypeptide composition. Probing with monoclonal and polyclonal antibodies showed that polypeptides belonging to different [EF fractions with the same mobility in denaturing sodium dodecyl sulphate polyacrylamide gel electrophoresis, are immunologically distinct polypeptides. This is the first report of the presence in the thylakoid membrane of a number of LHCII polypeptides that may reflect the genetic complexity of the Cab genes. Moreover preparative amounts have been obtained of the minor chlorophyll a/b proteins CP 29, CP 26 and CP 24 that have been recently described. The analysis of a currently used LHCII preparation by the present method shows that this fraction is actually contaminated by two minor chlorophyll a/b proteins.  相似文献   

12.
Pronounced aggregation of the photosystem II light-harvesting complex (LHC II) was observed in low-lightgrown tobacco plants stressed with a strong CO2 deficit for 2–3 days. The LHC II aggregates showed a typical band at 697–700 nm (F699) in low-temperature emission spectra. Its excitation spectrum corresponded to that of detergent-solubilized LHC II. Formation of F699 in stressed plants was not reversed in the dark and leaves did not contain any zeaxanthin showing that neither a light-induced transthylakoid pH gradient nor zeaxanthin was required for LHC II aggregation. The CO2-stressed plants showed clear signs of photodamage: depression of the potential yield of photosystem II photochemistry (F,/FM) by 50–70% and a decline in chlorophyll content by 10–15%. Therefore, we propose that the photodamage to the photosynthetic apparatus is the cause of the LHC II aggregation in plants. The F699 exhibited a reversible decrease of its intensity upon irradiation of leaves with intensive light. There was no or only slight decrease around 700 nm in unstressed plants. The nonphotochemical quenching of chlorophyll fluorescence showed the opposite relation, being higher before than after the strong CO2 deficit. This discrepancy was likely related to the different LHC II aggregation state in control and stressed plants.  相似文献   

13.
Chlorophyll alb binding proteins serve as light-harvesting antennae. Additionally they seem to modulate proton pumping by photosystem II, because their covalent modification by N, N-dicyclohexylcarbodiimide is paralleled by a short-circuit of this activity. This side action was further characterized in comparative study with control thylakoids and thylakoids lacking chlorophyll alb binding proteins. The latter were derived from peas grown under intermittent light. They differed from controls in the following: (i) after incubation with A^A^-dicyclohexylcarbodiimide there was no protonic short circuit, (ii) under flashing light the rate of proton consumption at the acceptor side of photosystem II was accelerated and (iii) the periodical pattern of proton release from water oxidation was flattened out. It was obvious that chlorophyll alb binding proteins modulated the kinetics and the stoichiometry of proton release from water oxidation and proton uptake at the quinone binding pocket.  相似文献   

14.
Abstract— The light-harvesting Chl-a/b protein complex (LHC) of Lactuca sativa L. was examined for pigment content, excitation energy transfer and behavior under acidic conditions:
(1) Lettuce LHC contains Chl-a, Chl-b and xanthophylls (lutein, neoxanthin, lactucaxanthin, viola-xanthin) at a molar ratio of 6:4:3; their contribution to the absorbance of the LHC between 390 and 530 nm is estimated to be about 31% (Chl-a), 26% (Chl-h) and 43% (xanthophylls).
(2) Energy transfer from xanthophylls and Chl-fe to Chl-a takes place at 100% transfer efficiency.
(3) LHC exhibits an unusual acid stability: in contrast to complexes of photosystem I or II, LHC-bound chlorophylls are not converted to phaeophytin and LHC apoprotein is not denatured at pH 1.5; also, energy transfer is maintained.
(4) Pronase or trypsin treatment do not affect acid stability and energy transfer.
(5) Treatments that break down acid stability (heat, urea or TritonX–100) also inhibit energy transfer.
The coincidental breakdown of energy transfer and acid stability points at one underlying process, namely, the breakdown of a structure that enables protection of chlorophylls from proton attack and close contiguity of xanthophylls and chlorophylls as required for energy transfer. Dense packing of xanthophylls and chlorophylls within lipophilic crevices of the LHC is suggested.  相似文献   

15.
Abstract— The chlorophyll a fluorescence properties of Gonyaulax polyedra cells before and after transfer from a lightdark cycle (LD) to constant dim light (LL) were investigated. The latter display a faster fluorescence transient from the level ‘I’ (intermediary peak) to ‘D’ (dip) to ‘P’ (peak) than the former (3 s as compared to 10 s), and a different pattern of decline in fluorescence from ‘I’ to ‘D’ and from ‘P’ to the steady state level with no clearly separable second wave of slow fluorescence change, referred to as ‘s' (quasi steady state)→‘M’ (maximum) →‘T’ (terminal steady state). The above differences are constant features of cells in LD and LL, and are not dependent on the time of day. They are interpreted as evidence for a greater ratio of photosystem II/photosystem I activity in cells in LL. After an initial photoadaptive response following transfer from LD to LL, the cell absorbance at room temperature and fluorescence emission spectra at 77 K for cells in LL and LD are comparable. The major emission peak is at 685–688 nm (from an antenna Chl a 680, perhaps Chl a-c complex), but, unlike higher plants and other algae, the emission bands at 696–698 nm (from Chl aII complex, Chl a 685, close to reaction center II) and 710–720 nm (from Chl a1, complexes, Chl a 695, close to reaction center I) are very minor and could be observed only in the fluorescence emission difference spectra of LL minus LD cells and in the ratio spectra of DCMU-treated to non-treated cells. Comparison of emission spectra of cells in LL and LD suggested that, in LL, there is a slightly greater net excitation energy transfer from the light-harvesting peridinin-Chl a (Chl a 670) complex, fluorescing at 675 nm, to the other antenna chlorophyll a complex fluorescing at 685–688 nm, and from the Chl a., complex to the reaction center II. Comparison of excitation spectra of fluorescence of LL and LD cells, in the presence of DCMU, confirmed that cells in LL transfer energy more extensively from the peridinin-Chl a complex to other Chl a complexes than do cells in LD.  相似文献   

16.
A photosystem (PS) I holocomplex was isolated from Pleurochloris meiringensis Vischer (Xanthophyceae) using sucrose density centrifugation. This complex exhibited a fluorescence emission maximum at 715 nm, which is in accordance with the long wavelength emission of whole cells. The complex was further dissociated into a core complex and a light-harvesting protein (LHC I). The core protein contains mainly Chl a and β-carotene, is 8.25 times enriched in P700 and has its main emission maximum at 715 nm. Therefore, the longest wavelength emission of P. meiringensis is due to the PS I core, which is in contrast to higher plants. The LHC I differs from LHC II with regard to its polypeptide pattern as well as its spectral properties. The arrangement of antennae is discussed in relation to the regulation of energy transfer between the photosystems.  相似文献   

17.
Abstract— The formation of lamellar chlorophyll-protein complexes I and II, solubilized by sodium dodecyl sulfate, was studied by hydroxylapatite column chromatography during greening of etiolated Phaseohis vulgaris leaves.
The protein moiety of both complexes preexists in the prolamellar body of etiolated tissue. The complex II to complex I protein ratio is of the order of 0.5. During greening in intermittent illumination the 'proto'-chloroplast is agranal, and contains 'primary' thylakoids and chlorophyll a (Chl a ). At this stage the complex II to complex I protein ratio increases only slightly. Further greening of the plant tissue in continuous illumination results in grana, Chi b (chlorophyll b ) and more Chl a formation. The complex II to complex I protein ratio in unfractionated thylakoids is now of the order of 2.5, while in grana it is of the order of 4.0.
The binding of chlorophyll formed during greening to the protein moiety of the two complexes is found to be selective. The Chi a selectively formed under intermittent illumination is more strongly bound to the complex I protein. The Chi b and Chl a formed in continuous illunination are found bound to both complex I and complex II proteins.
Analysis by hydroxylapatite column chromatography of subchloroplast fractions obtained by different fractionation procedures have shown that these two chlorophyll-protein complexes are most probably derived from the PSI (photosystem I) and PSII (photosystem II) particles of the photosynthetic membrane. These findings suggest that PSI units are assembled ahead of PSII units. Moreover, they indicate that the complex I protein is the main protein component in the prolamellar body membranes, the 'primary' thylakoids. and the stroma lamellae, while in the grana membranes the major protein is the complex II protein. Finally our results show that formation of the photosynthetic membranes is a multi-step process.  相似文献   

18.
We present ab initio transition density cube (TDC) calculations of the coulombic couplings between chlorophyll and carotenoid pigments in the major light-harvesting complex of photosystem II (LHC II) based on the 2.72 Å structure [Liu et al., Nature 428(2004) 287–292]. A comparison with couplings calculated by the ideal dipole approximation (IDA) demonstrate that for inter-pigment distances of less than 25 Å the IDA-values can deviate by up to one order of magnitude from the exact values calculated by the TDC-method. The largest deviations are observed for interactions involving Qx states because of a significant multipole character of the corresponding Qx transitions.  相似文献   

19.
Single-photon timing measurements on flowing samples of Chlorella vulgaris and Chlamydomonas reinhardtii at low excitation intensities at room temperature indicate two main kinetic components of the fluorescence at open reaction centers (F0) of photosystem II with lifetimes of approx. 130 and 500 ps and relative yields of about 30 and 70%. Closing the reaction centers progressively by preincubation of the algae with increasing concentrations of 3-(3′,4′-dichlorophenyl)-l,l-dimethylurea (DCMU) and hydroxylamine gave rise to a slow component with a lifetime increasing from 1.4 to 2.2 ns (Fmax) The yield of the slow component increased to 65-68% of the total fluorescence yield in parallel to a decrease in the yield of the fast component to a value close to zero at the fmax-level. The 130 ps lifetime of the fast component remained unchanged. The middle component showed an increase of its lifetime from 500 to 1100 ps and of its yield by a factor of 1.5. Spacing of the ps laser pulses by 12 μs allowed us to resolve a new long-lived fluorescence component of very small amplitude which is ascribed to a small amount of chlorophyll not connected to functional antennae. The opposite dependence of the yield of the fast and the slow component on the state of the reaction centers at almost constant lifetimes is consistent with a mechanism of energy conversion in largely separately functioning photosystem II units. Yields and lifetimes of these two components are in agreement with the high quantum yield of photosynthesis. The lower lifetime limit of 1.4 ns of the slow component is assigned to the average transfer time of an excited state from a closed to a neighboring open reaction center and the increase in the lifetime to 2.2 ns is evidence for a limited energy transfer between photosystems II. Relative effects of changing the excitation wavelength from 630 to 652 nm on the relative fluorescence yields of the kinetic components were studied at the fluorescence wavelengths 682, 703 and 730 nm. Our data indicate that (i) the middle component has its fluorescence maximum at shorter wavelength than the fast component and (ii) that the antennae chlorophylls giving rise to the middle component are preferentially excited by 652 nm light. It is concluded that the middle component originates from the light-harvesting chlorophyll alb protein complexes and the major portion of the fast component from the chlorophyll a antennae of open photosystem II reaction centers.  相似文献   

20.
The binding (dissociation) constant for HCO?3 to the photosystem II complex in maize chloroplasts is approximately 80 μM. One HCO?3 binds per 500–600 chlorophyll molecules. In the dark, formate is a competitive inhibitor of HCO?3 binding, while 3-(3′,4′-dichlorophenyl)-1, 1-dimethylurea (DCMU) inhibits HCO?3 binding non-competitively. Light decreases HCO?3 binding in the presence of formate. Light increases the binding of HCO?3 in the presence of DCMU. The high binding constant for HCO, discriminates strongly among the various hypotheses attempting to explain the “bicarbonate-effect” on photosystem II. The proposal by Stemler and Jursinic (Arch. Biochem. Biophys. 221, 227–237 1983), that HCO?3 is one of a class of monovalent anionic inhibitors of photosystem II, is favored. These anions compete for a specific binding site on the photosystem II complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号