首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
俎栋林  郭华  宋枭禹  包尚联 《中国物理》2002,11(10):1008-1012
The approach of expanding the magnetic scalar potential in a series of Legendre polynomials is suitable for designing a conventional superconducting magnetic resonance imaging magnet of distributed solenoidal configuration. Whereas the approach of expanding the magnetic vector potential in associated Legendre harmonics is suitable for designing a single-solenoid magnet that has multiple tiers, in which each tier may have multiple layers with different winding lengths. A set of three equations to suppress some of the lowest higher-order harmonics is found. As an example, a 4T single-solenoid magnetic resonance imaging magnet with 4×6 layers of superconducting wires is designed. The degree of homogeneity in the 0.5m diameter sphere volume is better than 5.8 ppm. The same degree of homogeneity is retained after optimal integralization of turns in each correction layer. The ratio Bm/B0 in the single-solenoid magnet is 30% lower than that in the conventional six-solenoid magnet. This tolerates higher rated superconducting current in the coil. The Lorentz force of the coil in the single-solenoid system is also much lower than in the six-solenoid system. This novel type of magnet possesses significant advantage over conventional magnets, especially when used as a super-high field functional magnetic resonance imaging magnet.  相似文献   

2.
杨文晖 《物理》2019,48(4):227-236
20世纪70年代磁共振成像技术的发明为生物医学成像开辟了一个极富生命力的领域。随着技术的进步和生命科学研究的深入,磁共振成像技术正向超高场发展。文章将在介绍磁共振成像技术发展的历史后,结合作者的认识,简要介绍超高磁共振成像技术的发展现状和关键技术方面的进展。  相似文献   

3.
Spin-lattice relaxation of (129)Xe nuclei in solid natural xenon has been investigated in detail over a large range of paramagnetic O(2) impurity concentrations. Direct measurements of the ground state magnetic properties of the O(2) are difficult because the ESR (electron spin resonance) lines of O(2) are rather unstructured, but NMR measurements in the liquid helium temperature region (1.4-4 K) are very sensitive to the effective magnetic moments associated with the spin 1 Zeeman levels of the O(2) molecules and to the O(2) magnetic relaxation. From these measurements, the value of the D[Sz(2)-(1/3)S(2)] spin-Hamiltonian term of the triplet spin ground state of O(2) can be determined. The temperature and magnetic field dependence of the measured paramagnetic O(2)-induced excess line width of the (129)Xe NMR signal agree well with the theoretical model with the spin-Hamiltonian D=0.19 meV (2.3 K), and with the reasonable assumption that the E[S(x)(2)-S(y)(2)] spin-Hamiltonian term is close to 0 meV. An anomalous temperature dependence between 1.4 K and 4.2K of the (129)Xe spin-lattice relaxation rate, T(1n)(-1)(T), is also accounted for by our model. Using an independent determination of the true O(2) concentration in the Xe-O(2) solid, the effective spin lattice relaxation time (which will be seen to be transition dependent) of the O(2) at 2.3 K and 0.96 T is determined to be approximately 1.4 x 10(-8)s. The experimental results, taken together with the relaxation model, suggest routes for bringing highly spin-polarized (129)Xe from the low temperature condensed phase to higher temperatures without excessive depolarization.  相似文献   

4.
针对高磁场磁共振大孔径人体成像系统中超导磁体电源在励磁时向磁体充能、退磁时把能量“逆变” 回电网的设计要求,比较了两种能量回馈型的拓扑结构。通过 Matlab 仿真分析,验证了拟采用的拓扑结构的合 理性。   相似文献   

5.
Xenon porometry is a novel method used for characterizing porous materials by the (129)Xe nuclear magnetic resonance of xenon gas. With the method, the diffusion of gas is slowed down by immersing the material in a medium, which can be in liquid or solid state during measurements. Because of slow diffusion, the signal of a xenon atom is characteristic of the properties of only one pore, and the composite signal of all atoms represents the distribution of properties. The method is especially applicable for determining pore size distribution because the chemical shifts of two different xenon signals (one from liquid and the other from gas pockets in solid) are dependent on pore size. Therefore, the shapes of these signals represent pore size distribution function. In addition, the porosity of the material can be determined by comparing the intensities of two signals. This article focuses on describing xenon signals observed from gas pockets in a solid medium, which has turned out to be most convenient for pore size determination.  相似文献   

6.
Detection of tobacco smoke deposition by hyperpolarized krypton-83 MRI   总被引:1,自引:0,他引:1  
Despite the importance of the tobacco smoke particulate matter in the lungs to the etiology of pulmonary disease in cigarette smokers, little is currently known about the spatial distribution of particle deposition or the persistence of the resulting deposits in humans, and no satisfactory technique currently exists to directly observe tobacco smoke condensate in airways. In this proof-of-principle work, hyperpolarized (hp) 83Kr MRI and NMR spectroscopy are introduced as probes for tobacco smoke deposition in porous media. A reduction in the hp-83Kr longitudinal (T1) relaxation of up to 95% under near-ambient humidity, pressure and temperature conditions was observed when the krypton gas was brought into contact with surfaces that had been exposed to cigarette smoke. This smoke-induced acceleration of the 83Kr self-relaxation was observed for model glass surfaces that, in some experiments, were coated with bovine lung surfactant extract. However, a similar effect was not observed with hp-(129)Xe indicating that the 83Kr sensitivity to smoke deposition was not caused by paramagnetic species but rather by quadrupolar relaxation due to high adsorption affinity for the smoke deposits. The 83Kr T1 differences between smoke-treated and untreated surfaces were sufficient to produce a strong contrast in variable flip angle FLASH hp-83Kr MRI, suggesting that hp-83Kr may be a promising contrast agent for in vivo pulmonary MRI.  相似文献   

7.
N D Sen Gupta 《Pramana》1973,1(4):165-171
The phenomenon of magnetic resonance is studied by considering the transverse oscillatory field as superposition of two oppositely rotating fields. One of the rotating fields is taken as strong and the other relatively weak.  相似文献   

8.
In this study, a circulation system was used to measure T(1) values of bovine blood under physiological conditions at field strengths of 4.7, 7 and 9.4 T. Results show that T(1) increases linearly with magnetic field B(0) and can be described with the equation T(1)=129 ms/T B(0)+1167 ms for magnetic field strengths between 1.5 and 9.4 T.  相似文献   

9.
The single-sided NMR-MOUSE sensor that operates in highly inhomogeneous magnetic fields is used to record a CPMG 1H transverse relaxation decay by CPMG echo trains for a series of cross-linked natural rubber samples. Effective transverse relaxation rates 1/T2,short and 1/T2,long were determined by a bi-exponential fit. A linear dependence of transverse relaxation rates on cross-link density is observed for medium to large values of cross-link density. As an alternative to multi-exponential fits the possibility to analyze the dynamics of soft polymer network in terms of multi-exponential decays via the inverse Laplace transformation was studied. The transient regime and the effect of the T1/T2 ratio in inhomogeneous static and radiofrequency magnetic fields on the CPMG decays were studied numerically using a dedicated C++ program to simulate the temporal and spatial dependence of the CPMG response. A correction factor T2/T2,eff is derived as a function of the T1/T2 ratio from numerical simulations and compared with earlier results from two different well logging devices. High-resolution T1T2 correlations maps are obtained by two-dimensional Laplace inversion of CPMG detected saturation recovery curves. The T1T2 experimental correlations maps were corrected for the T1/T2 effect using the derived T2/T2,eff correction factor.  相似文献   

10.
In (3)He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted (3)He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only approximately 1 L of hyperpolarized (3)He gas. Diffusion weighting ranges from 0 s/cm(2) to 40 s/cm(2). Results show that the non-Gaussian effects of (3)He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.  相似文献   

11.
The anisotropic diffusion (AND) filter, an image processing technique derived from physics, was applied to low-resolution sodium magnetic resonance imaging (MRI) to examine the possibilities of image enhancement by postprocessing. We compared six different variants of AND filters. Besides the qualitative good results on phantom measurements, quantitative analyses on MRI of human kidney yielded major improvements in noise reduction and other quality measures: the noise (i.e., the standard deviation in the image background) could be reduced to 1%-2% of its original value, while linear filters (Gaussian, Fermi, Hamming) achieved a reduction to 42%-64%. Besides that, less than 5% of structures and intensities are lost when using AND filters. Comparing the different variants, the two-dimensional and the three-dimensional AND filter outperformed the histogram-of-gradient and tensor-based AND filter. We envision that by using these AND filters, quantitative analysis of sodium MRI of kidney could be improved.  相似文献   

12.
Purpose/ObjectiveThis study aimed to develop objective models of radiation effects on musculature in children with soft tissue sarcoma using treatment dosimetry and clinical and quantitative magnetic resonance imaging (MRI) parameters that may be used to guide treatment planning or predict side effects.MethodsIn the initial 13 patients undergoing external beam radiation therapy (RT) on a Phase II study of conformal or intensity-modulated RT for the treatment of soft tissue sarcoma approved by an Institutional Review Board, we evaluated quantitative MRI changes in the musculature to assess radiation-related treatment effects. Patients with soft tissue sarcoma, including Ewing's sarcoma, had quantitative T1, T2 and dynamic enhanced MRI (DEMRI) performed before, during (Week 4) and after RT (Week 12). Regions of interest were selected in consistent locations within and outside the high-dose regions (on ipsilateral and contralateral sides when available). Mean RT dose, T1, T2 and DEMRI parameters were calculated and modeled using a mixed random coefficient dose model.ResultsThe mean doses to the high- and low-dose regions were 56.4 Gy (41.8–75.3 Gy) and 13.0 Gy (0.1–37.5 Gy), respectively. Compared with tissues distant from the tumor bed, maximal enhancement was significantly increased in tissues adjacent to the tumor/tumor bed prior to RT (60.6 vs. 44.2, P=.045) and remained elevated after 12 weeks. T1 was significantly elevated in tissues adjacent to the tumor bed prior to RT (942.4 vs. 759.0, P=.0078). The slope of longitudinal change in T1 was greater for tissues that received low-dose irradiation than those that received high-dose irradiation (P=.0488). The effect of dose on the slope of T2 was different (P=.0333) when younger and older patients are compared.ConclusionsAcute affects of irradiation in muscle are quantifiable via MRI. These models provide evidence that quantifiable MRI parameters may be correlated with patient parameters of radiation dose and clinical factors including patient age. Long-term follow-up will be required to determine if acute changes correlate with clinically significant late effects.  相似文献   

13.
A low-field nuclear magnetic resonance spectrometer for non-invasive monitoring of human finger blood glucose fluctuations was developed. Saline solution and blood serum samples with different glucose concentrations were first detected by the spectrometer and it has been found that there was a high-linear correlation between the glucose concentration and the transverse relaxation time. Then, the spectrometer was employed to noninvasively measure a finger from each of the several volunteers. The experiment results showed that the transverse relaxation time of the human finger increases with human blood glucose concentration. In conclusion, the human finger nuclear magnetic resonance spectrometer could be a potential tool to noninvasive monitoring of human body’s blood glucose fluctuations in the future.  相似文献   

14.
Poincaré group electrodynamics is {ie255-1} conserving and Lorentz covariant under all conditions by definition. Examples are given of these properties. Comay’s comment is incorrect: any {ie255-2} conserving field theory that is Lorentz covariant is consistent with special relativity, whose underlying group is the Poincaré group.  相似文献   

15.
Nuclear quadrupole resonance (NQR) of209Bi has been studied in Bi4 (GeO4)3 and Bi4 (SiO4)3 using a wide band coherence-controlled superregenerative oscillator-detector. All the four allowed (ΔM I=±1) transitions are observed. In both cases the electric field gradient (EFG) tensor is axially symmetric (η=0.0). The quadrupole coupling constante 2 qQ is measured to be 490.8±1 MHz and 470.4±1 MHz respectively. It is pointed out that the purely ionic model is inadequate to understand these results. With the available experimental accuracy and the strength of the applied electric field (∼ 6 KV/cm), no field-induced effects on the NQR spectrum could be observed in the case of Bi4 (SiO4)3.  相似文献   

16.
Nanocrystalline CeO2 samples have been manufactured using sol-gel techniques, containing either 15 % silica or 10 % alumina by weight to restrict growth of the ceria nanocrystals during annealing by Zener pinning. 29Si and 27Al MAS NMR have been used to investigate the structure of these pinning phases over a range of annealing temperatures up to 1000 °C, and their effect on the CeO2 morphology has been studied using electron microscopy. The silica pinning phase resulted in CeO2 nanocrystals of average diameter 19 nm after annealing at 1000 °C, whereas the alumina pinned nanocrystals grew to 88 nm at the same temperature. The silica pinning phase was found to contain a significant amount of inherent disorder indicated by the presence of lower n Qn species even after annealing at 1000 °C. The alumina phase was less successful at restricting the growth of the ceria nanocrystals, and tended to separate into larger agglomerations of amorphous alumina, which crystallised to a transition alumina phase at higher temperatures.  相似文献   

17.
By solving the Diras equation for the motion of an electron (c) in the circularly polarized electromagnetic field it is shown that the intrinsic electron spin forms an interaction Hamiltonian with a time independent fieldB (3) of electromagnetic radiation in the vacuum. In the same way as intrinsic spin is a fundamental property of the electron,B (3) is therefore a fundamental and intrinsic property of the vacuum electromagnetic field.  相似文献   

18.
In this study, FG beads (ferrite nanoparticles in the core covered with poly-(styrene-co-glycidyl methacrylate)) were made into fluorescent magnetic carriers (FMCs) containing the fluorescent substance, europium ion (Eu3+) complex. The developed FMCs showed several notable features such as high fluorescence intensity and high dispersibility in water. More importantly, FMCs did not leak Eu3+ complex. It is expected that the FMCs will be a useful tool for biomolecular recognition and imaging and contribute to advancement of a wide range of research fields, including cell biology and molecular imaging.  相似文献   

19.
Progressive saturation EPR measurements and EPR linewidth determinations have been performed on spin-labeled lipids in fluid phospholipid bilayer membranes to elucidate the mechanisms of relaxation enhancement by different paramagnetic ion salts. Such paramagnetic relaxation agents are widely used for structural EPR studies in biological systems, particularly with membranes. Metal ions of the 3d and 4f series were used as their chloride, sulfate, and perchlorate salts. For a given anion, the efficiency of relaxation enhancement is in the order Mn(2+) > or = Cu(2+) > Ni(2+) > Co(2+) approximately Dy(3+). A pronounced dependence of the paramagnetic relaxation enhancement on the anion is found in the order ClO(-)(4) > Cl(-) > SO(2-)(4). This is in the order of the octanol partition coefficients multiplied by spin exchange rate constants that were determined for the different paramagnetic salts in methanol. Detailed studies coupled with theoretical estimates reveal that, for the chlorides and perchlorates of Ni(2+) (and Co(2+)), the relaxation enhancements are dominated by Heisenberg spin exchange interactions with paramagnetic ions dissolved in fluid membranes. The dependence on membrane composition of the relaxation enhancement by intramembrane Heisenberg exchange indicates that the diffusion of the ions within the membrane takes place via water-filled defects. For the corresponding Cu(2+) salts, additional relaxation enhancements arise from dipolar interactions with ions within the membrane. For the case of Mn(2+) salts, static dipolar interactions with paramagnetic ions in the aqueous phase also make a further appreciable contribution to the spin-label relaxation enhancement. On this basis, different paramagnetic agents may be chosen to optimize sensitivity to different structurally correlated interactions. These results therefore will aid further spin-label EPR studies in structural biology.  相似文献   

20.
Q Fu  S Y Wu  J Z Lin  J S Yao 《Pramana》2007,68(3):499-506
The impurity displacements for Fe3+ and Ru3+ in corundum (Al2O3) are theoretically studied using the perturbation formulas of the spin Hamiltonian parameters (zero-field splitting and anisotropic g factors) for a 3d5 (with high spin S = 5/2) and a 4d5 (with low spin S = 1/2) ion in trigonal symmetry, respectively. According to the investigations, the nd5 (n = 3 and 4) impurity ions may not locate at the ideal Al3+ site but undergo axial displacements by about 0.132 Å and 0.170 Å for Fe3+ and Ru3+, respectively, away from the center of the ligand octahedron along the C3 axis. The calculated spin Hamiltonian parameters based on the above axial displacements show good agreement with the observed values. The validity of the results is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号