首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
RuRhH2Cl(COD)(dppm)2 (1) (COD = 1,5-C8H12, DPPM = Ph2PCH2PPh2) does not react with LiBHEt3 in THF, but in toluene RuRhH2(PhPCH2PPh2)(dppm)(COD) (3) is formed quantitatively. In contrast, the reaction of 1 with KBH(sec-Bu)3 in THF selectively gives RuRhH2(CH(PPh2)2)(dppm)(COD) (4), whereas in toluene a mixture of 3 and 4 is obtained. Mechanisms are proposed for these reactions. The X-ray crystal structure of 4 · PhCH3 reveals direct coordination of a methanido group to rhodium and a long metal-metal distance (3.3006(6) Å).  相似文献   

2.
[W3Se7(S2P(OEt)2)3]Br was prepared by reacting (Et4N)2W3Se7Br6 with KS2P (OEt)2 in CH3CN and its crystal structure determined. In the [W33-Se)(μ2-Se2)3]4+ core the W---W bond length is 2.755(5)-2.764(6) Å and the Se---Se bond length is 2.32(1)- 2.34(4) Å.  相似文献   

3.
The molecular structure of [Zr(NMe2)4]2 has been determined by an x-ray study and shown to involve a central Zr2N8 moiety involving the fusing of two trigonal bipyramidal units along a common axial-equatorial edge. The terminal Zr---NMe2 units have trigonal planar coordination about the nitrogen atoms: Zr---N = 2.050(5) and 2.104(5) Å, and Zr---N (bridge) = 2.224(3) and 2.453(4) Å for equatorial and axial bonds, respectively. The Zr---Zr distance is 3.704(1) Å as expected for a non-M---M bonding bridged compound. In tetrahydrofuran solution, Zr(NMe2)4 and LiNMe2 react irreversibly giving Zr(NMe2)6 Li2(THF)2 which has been isolated and characterized by an X-ray study. The central ZrN6 octahedral moiety is capped on two opposite faces by Li atoms which are also coordinated to an oxygen atom of a THF molecule. Pertinent distances are: Zr---N = 2.22(7) (av.), N---Li = 2.155(25) (av.) and Li---O = 1.915(10) Å.  相似文献   

4.
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = S(CH2)4S, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.  相似文献   

5.
The reaction between metallic barium and fluoroisopropanol or alcoholysis of [Ba(OPri)2] produces a pentanuclear fluoroalkoxide. Its X-ray structure determination showed its formulation to correspond to Ba55-OH)[μ3-OCH(CF3)2]42-OCH(CF3)2]4 [OCH(CF3)2](THF)4(H2O)·THF. The metallic core is based on a square pyramid encapsulating an hydroxo ligand. In addition to the barium---alkoxide bonds [2.53(3)–2.86(3) Å] neutral O-donors, four THF [2.82(2)–2.86(3) Å] and one H2O [2.79(3) Å] and secondary barium---fluorine interactions [2.99(2)–3.31(2) Å] ensure high coordination numbers, from 9 to 11 for the metal centers. Hydrogen bonding between the apical fluoroisopropoxide, the water molecule and one THF molecule, non-bonded to a metal center, accounts for the stability of the hydrate and illustrates the Lewis acidity of fluoroalkoxides. Thermal decomposition leads to BaF2.  相似文献   

6.
Toluene solutions of M2(NMe2)6 (M = Mo, W) react with mesitylene selenol (Ar′SeH) to give M2(SeAr′) 6 complexes. MO2(OR)6 (R = tBu, CH2tBu) react with excess> 6 fold) Ar′SeH to give Mo2 (SeAr′)6, whilst W2(OR)6(py)2 (R = iPr, CH2tBu) react with excess (> 6 fold) Ar′SeH to give W2(OR)2(SeAr′)4. Reaction of MO2(OPri)6 with Ar′SeH produces Mo2(OPri)2 (SeAr′)4 which crystallizes in two different space groups. These areneselenato complexes are air-stable and insoluble in common organic solvents. X-ray crystallographic studies revealed that the Mo2(SeAr′)6 and W2(SeAr′)6 compounds are isostructural in the solid state and adopt ethane-like staggered configurations with the following important structural parameters, M---M (W---W/Mo---Mo) 2.3000(11)/2.2175(13) Å, M---Se 2.430 (av.)/2.440 (av.) Å, M---M---SE 97.0° (av.)°. In the solid state W2(OiPr)2(SeAr′)4 adopts the anti-configuration with crystallographically imposed Ci symmetry and W---W 2.3077(7) Å, W---Se 2.435 (av.) Å, W---O 1.858(6) Å; W---W---SE 100.27(3)°, 93.8(3)° and W---W---O 108.41(17)°. Mo2(OPri)2(SeAr′) 4 crystallizes in both P and A2/a space groups in which the molecules are isostructural with each other and the tungsten analogue. Important bond lengths and angles are Mo---Mo 2.180(24) Å, Mo---Se 2.432(av.) Å, Mo---O 1.872(9) Å, Mo---Mo---Se 99.39(9)°, 94.71(8)°, Mo---Mo---O 107.55(28)°.  相似文献   

7.
The reaction of {HB(Me2pz)3}Mo(NCS)(S4) [HB(Me2pz)3 = hydrotris(3,5-dimethylpyrazolyl)borate anion] with dicarbomethoxyacetylene in refluxing toluene results in the formation of the brown, diamagnetic complex {HB(Me2pz)3}Mo(NCS){S2C2(CO2Me)2} (1) (the reactants above also yield 1 upon prolonged reaction in dichloromethane at 25°C), which has been characterized by X-ray crystallography. The mononuclear pseudo-octahedral complex contains a facially tridentate HB(Me2pz)3 ligand, a monodentate N-bound NCS ligand, and a bidentate S2C2(CO2Me)22− ligand having a near planar MoS2C4 fragment and a SC=CS bond distance of 1.342(15) Å. Solutions of 1 are unstable in air and decompose to produce {HB(Me2pz)3}MoO2(NCS) and {HB(Me2pz)3}MoO(NCS)2.  相似文献   

8.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

9.
A transition metal-substituted silylacetylene [(η5-C5H5)Fe(CO)2SiMe2C]2, [FpMe2SiC]2 (I) was synthesized and characterized spectroscopically and structurally. I crystallized in the monoclinic space group P21/n, A = 13.011(3) Å B = 12.912(3) Å, C = 13.175(5) Å, β = 94.95(2). The acetylene linkage is reactive toward Co2(CO)8 to form I. Co2(CO)6 (II) which was also characterized spectroscopically and by single crystal X-ray diffraction. II crystallized in the orthorhombic space group Pbca, A = 17.64(2) Å, B = 14.225(10) Å, C = 24.49(2) Å.  相似文献   

10.
A study has been carried out of the catalytic activity of the systems formed by [HRh{P(OPh)3}4] or [HRh(CO){P(OPh)3}3] with the modifying ligands P(OPh)3, PPh3, diphos and Cp2Zr(CH2PPh2)2 in hydroformylation of hex-1-ene (at p = 5 bar). The best results were obtained with the system [HRh{P(OPh)3}4]+Cp2Zr(CH2PPh2)2 (75–85% yeild of aldehydes).  相似文献   

11.
The geometric structure of (CF3S)2C=C(SCF3)2 in the vapour phase was determined by electron diffraction. The molecule possesses D2 symmetry with the S---CF3 bonds oriented perpendicular to the ethene plane, in alternating directions up-down-up-down. The following skeletal geometric parameters were obtained (ra distances and angles, experimental uncertainties are 3σ values): C=C = 1.34Å (ass.), C(sp2---S = 1.761(5)Å, S---C(sp3) = 1.832(5)Å, S---C---C = 119.6(4)°, C---S---C = 100.6(13)°, and ø(C=C---S---C) = 90.9(11)°. The gas phase conformation differs considerably from the crystal structure, where the molecule possesses Ci symmetry and the CF3 groups, which are bonded to cis-standing sulfur atoms, lie on the same side of the ethene plane with dihedral angles ø(C=C---S---C) of 117° and 127°.  相似文献   

12.
Reaction of the optically active primary amine (S)-(—)--methylbenzylamine with trimethylaluminium in heptane affords the crystalline organoaluminium dimer (S)-(—)-(S)-(—)-[(C6H5)CH(CH3)NHA1(CH3)2]2. Isolated as large, colourless, extremely air-sensitive prismatic crystals, the title compound crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 8.406(3), b = 15.505(4), c = 17.547(5) Å, V = 2287 Å3 and p = 1.03 g cm−3 for Z = 4. Least-squares refinement based on 1477 observed reflections converged at R = 0.056, Rw = 0.058. Methane was eliminated during the course of the reaction due to cleavage of A1---C and N---H bonds resulting in an asymmetric A12N2 fragment at the core of the organoaluminium dimer. The mean A1---C bond distance in the dimethylaluminium units is 1.930(8), while the mean A1---N bond distance is 1.950(5) Å. Specific rotation ([]D25 in CH2C12)of the dimer is determined to be - 20.6°.  相似文献   

13.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

14.
One-dimensional Co(dien)2(VO3)3·(H2O) was prepared from the hydrothermal reaction of NH4VO3, Co2O3, diethylenetriamine (dien) and H2O at 130 °C. The compound crystallizes in the monoclinic system, space group P21/c with a=16.1581(6) Å, b=8.7006(3) Å, c=13.9893(4) Å, β=103.1483(11)°, V=1915.13(11) Å3, Z=4, and R1=0.0268 for 3060 observed reflections. Single crystal X-ray diffraction revealed that the structure is composed of infinite one-dimensional chains formed by corner-sharing VO4 tetrahedra with Co(dien)3+ complex cations and crystallization water molecules occupying the interchain positions, which are held together to a three-dimensional network via extensive hydrogen-bonding interactions. The compound, with a new zig-zag conformation of metavanadate chains, is the first example of vanadium oxides incorporating trivalent transition metal coordination groups. Other characterizations by elemental analysis, IR and thermal analysis are also described.  相似文献   

15.
The reaction of Ru(CO)4(C2H4) or Ru(CO)5 with 1,5-Ph4P2N4S2 in CH2Cl2/hexane at 23°C produces the dimer [Ru(CO)2(Ph4 P2N4S2)]2 (2), which was shown by X-ray crystallography to have a centrosymmetric structure in which the P2N4S2 ring is attached to one ruthenium atom through two (geminal) nitrogen atoms and the remote sulfur atom and serves as a bridge to the other ruthenium atom via the second sulfur atom. Crystals of 2 ·2(CH2Cl2) are triclinic, space group P (No. 2), a = 12.901(1) Å, b = 13.072(1) Å, c = 10.123(1) Å, = 100.88(1)°, β = 98.90(1)°, γ = 67.50(1)°, V = 1542.4(3) Å, Z = 1 with final R and Rw values of 0.040 and 0.027, respectively.  相似文献   

16.
A novel three-dimensional metal selenite [Fe2(H2O)4(SeO3)2] (1) has been hydrothermally synthesized and characterized by the elemental analyses, IR spectrum, TG analysis and the single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/n, with a=6.5283(13) Å, b=8.8754(18) Å, c=7.6798(15) Å, (=98.82(3)β, V=439.71(15) Å3, and Z=2. Compounds 1 exhibits interesting three-dimensional structure constructed from {FeO6} octahedra and {SeO3} pyramids linked via the corner- and/or edge-sharing mode. The most interesting structural feature of compound 1 is that the existence of multidirectional intersecting double helical chains in one compound.  相似文献   

17.
The synthesis and structure of the cationic, four-coordinate, ten-electron bismuth(III) complex [BiPh2(HMPA)2]+ (HMPA = hexamethylphosphoramide) is reported. The coordination geometry around the bismuth centre is that of a trigonal bipyramid with one equatorial site vacant and with phenyls in the other equatorial positions and the HMPA ligands in axial sites.  相似文献   

18.
Di- and tri-organotin(IV) diphenyldithiophosphinates, R2Sn(S2PPh2)2 (R = Me, n-Bu, Bz, Ph) and R3SnS2PPh2 (R = Me, Cy, Bz, Ph) were prepared by reaction of the corresponding organotin chlorides or oxides with diphenyldithiophosphinic acid or its ammonium salt. All the compounds were characterized by IR and 1H NMR spectra. For R2Sn(S2PPh2)2 (R = Me, Ph) and Ph3SnS2PPh2 mass spectra and tin-119m Mössbauer spectra were also recorded. Monodentate bonding of the dithiophosphinic ligand and tetrahedral structures are proposed for the triorganotin derivatives, while in diorganotin compounds there appears to be distorted octahedral geometry around tin, with anisobidentate dithiophosphonic ligands.  相似文献   

19.
An X-ray crystal structure determination for the bimetallic complex Mn2(CO)8-[P(NMe2)3]2 reveals that the P(NMe2)3 ligands are trans to the Mn---Mn bond and the Mn---Mn bond distance is relatively long, 2.946(1) Å.  相似文献   

20.
The synthesis, spectroscopic, and crystal structures of three heteroleptic thioether/halide platinum(II) (Pt(II)) complexes of the general formula [Pt(9S3)X2] (9S3=1,4,7-trithiacyclononane, X=Cl, Br, I) are presented. All three 9S3/dihalo complexes form very similar structures in which the Pt(II) center is surrounded by a cis arrangement of two halides and two sulfur atoms from the 9S3 ligand. The third sulfur from the 9S3 forms a long distance interaction with the Pt center resulting in an elongated square pyramidal structure with a S2X2+S1 coordination geometry. The distances between the Pt(II) center and axial sulfur shorten with larger halide ions (Cl=3.260(3) Å>Br=3.243(2) Å>I=3.207(2) Å). These distances are consistent with the halides functioning as π donor ligands, and their Pt---S axial distances fall intermediate between Pt(II) thioether complexes involving π acceptor and σ donor ligands. The 195Pt NMR chemical shift values follow a similar trend with an increased shielding of the platinum ion with larger halide ions. The 9S3 ligand is fluxional in all of these complexes, producing a single carbon resonance. Additionally, a related series of homoleptic crown thioether complexes have been studied using 195Pt NMR, and there is a strong correlation between the chemical shift and complex structure. Homoleptic crown thioethers show the anticipated upfield chemical shifts with increasing number of coordinated sulfurs. Complexes containing four coordinated sulfur donors have chemical shifts that fall in the range of −4000 to −4800 ppm while a value near −5900 ppm is indicative of five coordinated sulfurs. However, for S4 crown thioether complexes, differences in the stereochemical orientation of lone pair electrons on the sulfur donors can greatly influence the observed 195Pt NMR chemical shifts, often by several hundred ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号