共查询到20条相似文献,搜索用时 15 毫秒
1.
We indicated in our previous work that for QED the role of the scalar potential which appears at the loop level is much smaller than that of the vector potential and is in fact negligible. But the situation is different for QCD, one reason is that the loop effects are more significant because αs is much larger than α, and second the non-perturbative QCD effects may induce a sizable scalar potential. In this work, we study phenomenologically the contribution of the scalar potential to the spectra of charmonia, bottomonia and bc(bc) families. Taking into account both vector and scalar potentials, by fitting the well measured charmonia and bottomonia spectra, we re-fix the relevant parameters and test them by calculating other states of not only the charmonia and bottomonia families, but also the bc family. We also consider the Lamb shift of the spectra. 相似文献
2.
Accurate calculation of the potential energy curve and spectroscopic parameters of X~2Σ~+ state of ~(12)Mg~1H 下载免费PDF全文
High level calculations on the ground state of12Mg1 H molecule have been performed using multi-reference configuration interaction(MRCI) method with the Davidson modification. The core–valence correlation and scalar relativistic corrections are included into the present calculations at the same time. The potential energy curve(PEC) of the ground state, all of the vibrational levels and spectroscopic parameters are fitted. The results show that the levels and spectroscopic parameters are in good agreement with the available experimental data. The analytical potential energy function(APEF) is also deduced from the calculated PEC using the Murrell–Sorbie(M–S) potential function. The present results can provide a helpful reference for the future spectroscopic experiments or dynamical calculations of the molecule. 相似文献
3.
By using the B3P86/aug-cc-pvtz method,the accurate equilibrium geometry of the AlSO(CS,X2A″) molecule has been calculated and compared with available theoretical values.The obtained results show that the AlSO molecule has a most stable structure with bond lengths of R OAl = 0.1864 nm,R OS = 0.1623 nm,R AlS = 0.2450 nm,together with a dissociation energy of 13.88 eV.The possible electronic states and their reasonable dissociation limits for the ground state of the AlSO molecule were determined based on the principle of atomic and molecular reaction statics.The analytic potential energy function of the AlSO molecule was derived by the many-body expansion theory and the contour lines were constructed for the first time,which show the internal information of the AlSO molecule,including the equilibrium structure and stable point.The analysis demonstrates that the obtained potential energy function of AlSO is reasonable and successful and the present investigations provide important insights for further study on molecular reaction dynamics. 相似文献
4.
Because of its unique optoelectronic properties,people have studied the characteristics of polarons in various quantum well(QW)models.Among them,the asymmetrical semiexponential QW(ASEQW)is a new model for studying the structure of QWs in recent years.It is of great significance to study the influences of the impurity and anisotropic parabolic confinement potential(APCP)on the crystal’s properties,because some of the impurities,usually regarded as Coulomb’s impurity potential(CIP),will exist in the crystal more or less,and the APCP has flexible adjustment parameters.However,the energy characteristics of the ASEQW under the combined actions of impurities and APCP have not been studied,which is the motivation of this paper.Using the linear combination operation and Lee-Low-Pines unitary transformation methods,we investigate the vibrational frequency and the ground state energy of the strong coupling polaron in an ASEQW with the influences of the CIP at the origin of coordinates and APCP,and make a comparison between our results and previous literature’s.Our numerical results about the energy properties in the ASEQW influenced by the CIP and APCP may have important significances for experimental design and device preparation. 相似文献
5.
Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials 下载免费PDF全文
The exact bound state solutions of the Klein-Gordon equation and Dirac equation with scalar and vector pseudoharmonic oscillator potentials are obtained in this paper. Furthermore, we have used the supersymmetric quantum mechanics, shape invariance and alternative method to obtain the required results. 相似文献
6.
The astrophysical S-factor of the4He+12C radiative capture is calculated in the potential model at the energy range 0.1-2.0 MeV.Radiative capture12C(α,γ)16O is extremely relevant for the fate of massive stars and determines if the remnant of a supernova explosion becomes a black hole or a neutron star.Because this reaction occurs at low energies,the experimental measurements are very difficult and perhaps impossible.In this paper,radiative capture of the12C(α,γ)16O reaction at very low energies is taken as a case study.In comparison with other theoretical methods and available experimental data,good agreement is achieved for the astrophysical S-factor of this process. 相似文献
7.
The exact normalized bound-state wavefunctions and energy equations of Klein-Gordon and Dirac equations are given with equal scalar and vector potentials s(r)=v(r)=V(r)/2=(Ar-2-Br-1)/2. 相似文献
8.
Solutions of the Duffin-Kemmer-Petiau equation in the presence of Hulthn potential in(1+2) dimensions for unity spin particles using the asymptotic iteration method 下载免费PDF全文
The relativistic Duffin-Kemmer-Petiau equation in the presence of Hulthn potential in(1+2) dimensions for spin-one particles is studied.Hence,the asymptotic iteration method is used for obtaining energy eigenvalues and eigenfunctions. 相似文献
9.
Global dynamical analysis of vibrational manifolds of HOCl and HOBr under anharmonicity and Fermi resonance:the dynamical potential approach 下载免费PDF全文
The vibrational dynamics of HOCl and HOBr between bending and OCl/OBr stretching coordinates with anharmonicity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dynamics is mostly mapped out by the classical nonlinear variables such as fixed points, except for the state energies, which are quantized. This approach is global in the sense that the focus is on a set of levels instead of individual ones. The dynamics of HOBr is demonstrated to be less complicated. The localized modes along the OCl/OBr stretching coordinates are also shown to have O-Br bonds more prone to dissociation. 相似文献
10.
In the two-quark model supposition for K0*(1430), which can be viewed as either the first excited state (ScenarioⅠ) or the lowest lying state (Scenario Ⅱ), the branching ratios and the direct CP-violating asymmetries for decays s0 → K0*0(1430)η (’) are studied by employing the perturbative QCD factorization approach. We find the following results: (a) The CP averaged branching ratios ofs0 → K0*0 (1430)η ands0→ K0*0(1430)η’ are small and both in the order of 10-7 . If one views K0* (1430) as the lowest lying state, B(s0→K0*0(1430)η) ≈ 3.9×10-7 and B(s0→K0*0(1430)η’) ≈ 7.8×10-7.(b) While the direct CP-violating asymmetries of these two decays are not small: if we still take the parameters of K0* (1430) in scenario , ACPdir(s0→K0*0(1430)η) ≈ 56.2% and ACPdir(s0→ K0*0(1430)η’) ≈ 42.4%. (c) The annihilation contributions will play an important role in accounting for future data, because both the branching ratios and the direct CP asymmetries of these two decays are sensitive to the annihilation type contributions. 相似文献
11.
12.
<正>Using first-principles total energy method,we study the structural,the electronic and the magnetic properties of the MnNi(110) c(2×2) surface alloy.Paramagnetic,ferromagnetic,and antiferromagnetic surfaces in the top layer and the second layer are considered.It turns out that the substitutional alloy in the outermost layer with ferromagnetic surface is the most stable in all cases.The buckling of the Mn-Ni(110) c(2×2) surface alloy in the top layer is as large as 0.26 A(1 A=0.1 nm) and the weak rippling is 0.038 A in the third layer,in excellent agreement with experimental results.It is proved that the magnetism of Mn can stabilize this surface alloy.Electronic structures show a large magnetic splitting for the Mn atom,which is slightly higher than that of Mn-Ni(100) c(2×2) surface alloy(3.41 eV) due to the higher magnetic moment.A large magnetic moment for the Mn atom is predicted to be 3.81μB.We suggest the ferromagnetic order of the Mn moments and the ferromagnetic coupling to the Ni substrate,which confirms the experimental results.The magnetism of Mn is identified as the driving force of the large buckling and the work-function change.The comparison with the other magnetic surface alloys is also presented and some trends are predicted. 相似文献
13.
The exact bound state wavefunctions and energy equations of Klein-Gordon and Dirac equations are given with equal scalar and vector potential s(r)=v(r)=V(r)/2=V_0tanh^2(r/d). The relation between the energy equation and that of relativistic harmonic is discussed. 相似文献
14.
15.
Surface diffusion of Si,Ge and C adatoms on Si (001) substrate studied the molecular dynamics simulation 下载免费PDF全文
Depositions of Si, Ge and C atoms onto a preliminary Si (001) substrate at different temperatures are investigated by using the molecular dynamics method. The mechanism of atomic self-assembling occurring locally on the flat terraces between steps is suggested. Diffusion and arrangement patterns of adatoms at different temperatures are observed. At 900 K, the deposited atoms are more likely to form dimers in the perpendicular [110] direction due to the more favourable movement along the perpendicular [110] direction. C adatoms are more likely to break or reconstruct the dimers on the substrate surface and have larger diffusion distances than Ge and Si adatoms. Exchange between C adatoms and substrate atoms are obvious and the epitaxial thickness is small. Total potential energies of adatoms and substrate atoms involved in the simulation cell are computed. When a newly arrived adatom reaches the stable position, the potential energy of the system will decrease and the curves turns into a ladder-like shape. It is found that C adatoms can lead to more reduction of the system energy and the potential energy of the system will increase as temperature increases. 相似文献
16.
Using first-principles total energy method, we study the structural, the electronic and the magnetic properties of the MnNi(110) c(2×2) surface alloy. Paramagnetic, ferromagnetic, and antiferromagnetic surfaces in the top layer and the second layer are considered. It turns out that the substitutional alloy in the outermost layer with ferromagnetic surface is the most stable in all cases. The buckling of the Mn–Ni(110) c(2×2) surface alloy in the top layer is as large as 0.26á(1á=0.1 n13) and the weak rippling is 0.038 AA in the third layer, in excellent agreement with experimental results. It is proved that the magnetism of Mn can stabilize this surface alloy. Electronic structures show a large magnetic splitting for the Mn atom, which is slightly higher than that of Mn–Ni(100) c(2×2) surface alloy (3.41 eV) due to the higher magnetic moment. A large magnetic moment for the Mn atom is predicted to be 3.81 μB. We suggest the ferromagnetic order of the Mn moments and the ferromagnetic coupling to the Ni substrate, which confirms the experimental results. The magnetism of Mn is identified as the driving force of the large buckling and the work-function change. The comparison with the other magnetic surface alloys is also presented and some trends are predicted. 相似文献
17.
Stephan Narison 《Physics letters. [Part B]》2013,718(4-5):1321-1333
Using recent values of the QCD (non-)perturbative parameters given in Table 1 and an estimate of the N3LO QCD perturbative contributions based on the geometric growth of the PT series, we re-use QCD spectral sum rules (QSSR) known to N2LO PT series and including all dimension-six NP condensate contributions in the full QCD theory, for improving the existing estimates of and from the open charm and beauty systems. We especially study the effects of the subtraction point on “different QSSR data” and use (for the first time) the Renormalization Group Invariant (RGI) scale-independent quark masses in the analysis. The estimates [rigourous model-independent upper bounds within the SVZ framework] reported in Table 8: , and , , which improve previous QSSR estimates, are in perfect agreement (in values and precisions) with some of the experimental data on and on recent lattice simulations within dynamical quarks. These remarkable agreements confirm both the success of the QSSR semi-approximate approach based on the OPE in terms of the quark and gluon condensates and of the Minimal Duality Ansatz (MDA) for parametrizing the hadronic spectral function which we have tested from the complete data of the and ? systems. The values of the running quark masses and from are in good agreement though less accurate than the ones from recent and ? sum rules. 相似文献
19.
Short-ranged potential effects on the recurrence spectra of lithium M = 1 atoms in parallel electric and magnetic fields 下载免费PDF全文
This paper presents recurrence spectra of highly excited lithium atoms with M = 1 state in parallel electric and magnetic fields at a fixed scaled energy ε = -0.03. Short-ranged potentials including ionic core potential and centrifugal barrier are taken into account. Their effects on the states and photo-absorption spectrum are analysed in detail. This demonstrates that the geometric features of classical orbits are of special importance for modulations of the spectral pattern. Thus the weak polarization as well as the reduction of correlation of electrons induced by short-ranged potentials give rise to the recurrence spectra of lithium M = 1 atoms more compact than that of the M = 0 one, which is in good agreement with the experimental prediction. 相似文献