首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of platinum(II) complexes supported by the tridentate bis(phosphine)phosphido ligand bis(2-diisopropylphosphinophenyl)phosphide) [(i)Pr-PPP] have been synthesized and characterized (1-4). X-Ray structural studies of [(i)Pr-PPP]PtCl (1) and [(i)Pr-PPP]PtCH(3) (3) complexes show meridional [(i)Pr-PPP] ligands around approximately square-planar platinum centers. Structural data and NMR analysis highlight a strong trans influence for the phosphido phosphorous donor, comparable to that of the anionic aryl carbon of the classic PCP pincer complexes. A series of thermally stable [PPP]Pt(IV) compounds, including [PPP]Pt(CH(3))(2)X [X = I (5) and SbF(6) (6)], were also synthesized. The study of the binding affinity of SO(2) and NO to complex 1 has also been addressed.  相似文献   

2.
The first six-membered gold(III) N^C^N pincer complex was obtained in good yield, under very mild conditions, by transmetalation of [Hg(κC-N^C^N)Cl] (N^CH^N = 1,3-bis(pyridin-2-ylmethyl)benzene, HL(1)) with Na[AuCl(4)]. The X-ray crystal structure of [Au(N^C^N)Cl][PF(6)] showed that the fused six-membered metallacycles each exist in a strongly puckered boat conformation. As shown by the (1)H NMR spectra in various solvents, the same structure is also retained in solution: no inversion of the six-membered metallacycles is observed in DMSO up to 95 °C. This correlates well with a reaction barrier of 17.5 kcal/mole, as determined by quantum chemical calculations. The reactivity of the present pincer complex is compared to that of the analogous 1,3-bis(2-pyridyl)benzene, HL(2), derivative, which has five-membered fused metallacycles. Sharp differences are found in the reactions with phosphines, such as PPh(3) and dppe (1,2-bis-diphenylphosphino-ethane), and with silver salts. Theoretical calculations were carried out on the two pincer complexes in order to try to understand these differences, and we found that the gold-chlorine bond is significantly stronger in the case of the complex containing five-membered metallacyclic rings.  相似文献   

3.
The coordination chemistry of the bidentate P,N hybrid ligand 2-(2'-pyridyl)-4,6-diphenylphosphinine (1) towards Pd(II) and Pt(II) has been investigated. The molecular structures of the complexes [PdCl(2)(1)] and [PtCl(2)(1)] were determined by X-ray diffraction, representing the first crystallographically characterized λ(3)-phosphinine-Pd(II) and -Pt(II) complexes. Both complexes reacted with methanol at the P=C double bond at an elevated temperature, leading to the corresponding products [MCl(2)(1H·OCH(3))]. The molecular structure of [PdCl(2)(1H·OCH(3))] was determined crystallographically and revealed that the reaction with methanol proceeds selectively by syn addition and exclusively to one of the P=C double bonds. Strikingly, the reaction of [PdCl(2)(1H·OCH(3))] with the chelating diphosphine DPEphos at room temperature in CH(2)Cl(2) led quantitatively to [PdCl(2)(DPEphos)] and phosphinine 1 by elimination of CH(3)OH and rearomatization of the phosphorus heterocycle.  相似文献   

4.
The synthesis, structure, and reactivity of a series of low-coordinate Fe(II) diketiminate amido complexes are presented. Complexes L(R)FeNHAr (R = methyl, tert-butyl; Ar = para-tolyl, 2,6-xylyl, and 2,6-diisopropylphenyl) bind Lewis bases to give trigonal pyramidal and trigonal bipyramidal adducts. In the adducts, crystallographic and (1)H NMR evidence supports the existence of agostic interactions in solid and solution states. Complexes L(R)FeNHAr may be oxidized using AgOTf, and the products L(R)Fe(NHAr)(OTf) are characterized with (19)F NMR spectroscopy, UV/vis spectrophotometry, solution magnetic measurements, elemental analysis, and, in one case, X-ray crystallography. In the structures of the iron(III) complexes L(R)Fe(NHAr)(OTf) and L(R)Fe(OtBu)(OTf), the angles at nitrogen and oxygen result from steric effects and not pi-bonding. The reactions of the amido group of L(R)FeNHAr with weak acids (HCCPh and HOtBu) are consistent with a basic nitrogen atom, because the amido group is protonated by terminal alkynes and alcohols to give free H(2)NAr and three-coordinate acetylide and alkoxide complexes. The trends in complex stability give insight into the relative strength of bonds from three-coordinate iron to anionic C-, N-, and O-donor ligands.  相似文献   

5.
6.
Synthesis and characterization of new (PONOP) [2,6-bis(di-tert-butylphosphinito)pyridine] metal (Ni, Pd, Pt) complexes are reported. Surprisingly, these compounds [(PONOP)MCl]Cl in the presence of 1 equiv of superhydride (LiEt(3)BH) formed a new class of complexes (H-PONOP)MCl, in which the pyridine ring in the PONOP ligand lost its aromaticity as a result of hydride attack at the para position of the ring. The new Ni-H compound [(H-PONOP)NiH] was synthesized by reacting (H-PONOP)NiCl with 1 equiv of superhydride. Analogous Pd and Pt compounds were prepared. Reactivity of these new pincer complexes toward MeLi and PhLi also has been studied. These Ni complexes catalyzed the hydrosilylation of aldehyde. In some cases characterization of new (PONOP)M complexes was difficult because of high instability due to degradation of the P-O bond.  相似文献   

7.
Deprotonation of the phosphine complexes Au(PHR(2))Cl with aqueous ammonia gave the gold(I) phosphido complexes [Au(PR(2))](n)() (PR(2) = PMes(2) (1), PCy(2) (2), P(t-Bu)(2) (3), PIs(2) (4), PPhMes (5), PHMes (6); Mes = 2,4,6-Me(3)C(6)H(2), Is = 2,4,6-(i-Pr)(3)C(6)H(2), Mes = 2,4,6-(t-Bu)(3)C(6)H(2), Cy = cyclo-C(6)H(11)). (31)P NMR spectroscopy showed that these complexes exist in solution as mixtures, presumably oligomeric rings of different sizes. X-ray crystallographic structure determinations on single oligomers of 1-4 revealed rings of varying size (n = 4, 6, 6, and 3, respectively) and conformation. Reactions of 1-3 and 5 with PPN[AuCl(2)] gave PPN[(AuCl)(2)(micro-PR(2))] (9-12, PPN = (PPh(3))(2)N(+)). Treatment of 3 with the reagents HI, I(2), ArSH, LiP(t-Bu)(2), and [PH(2)(t-Bu)(2)]BF(4) gave respectively Au(PH(t-Bu)(2))(I) (14), Au(PI(t-Bu)(2))(I) (15), Au(PH(t-Bu)(2))(SAr) (16, Ar = p-t-BuC(6)H(4)), Li[Au(P(t-Bu)(2))(2)] (17), and [Au(PH(t-Bu)(2))(2)]BF(4) (19).  相似文献   

8.
A series of platinum and palladium pincer complexes supported by achiral 1,3-bis(2′-imidazolinyl)benzene-based NCN ligands have been prepared via direct C2 metalation. Meanwhile, ligand precursor 3b and Pt(II) complex 4b were characterized by crystallographic studies, which reveals that the platinum atom in 4b adopts a distorted-square-planar geometry. The Pd(II) pincer complexes 5b was found to be an efficient catalyst for Suzuki cross-coupling reaction of aryl bromides and phenylboronic acid under air. In the presence of 0.5?mol% of Pd(II) 5b in DMF/K3PO4·3H2O for 8?h, the corresponding biaryl products could be obtained in 24–99% yields.  相似文献   

9.
An improved synthesis of pincer ligand bis[(2-dimethylamino)phenyl]amine ((Me)N(2)NH) was reported. Reaction of the Li complex of (Me)N(2)N with suitable Pd, Pt, and Ru precursors gave the corresponding metal complexes. The structures of the Pd, Pt, and Ru complexes were determined. The Ru complex showed activity in catalytic transfer hydrogenation of aryl and alkyl ketones.  相似文献   

10.
The synthesis of six novel zinc (II) mono(N-heterocyclic carbene) complexes is described. 1,3-Bis(mesityl)-imidazol-2-ylidene was reacted with the zinc salts ZnX2 (X=Cl, CH3COO, PhCOO, and PhCH2COO) to yield the corresponding monomeric Zn-NHC complex ZnCl2(NHC)(THF) (1) and dimeric [Zn(OOCCH3)2(NHC)]2 (2), [Zn(OOCPh)2(NHC)]2 (3), [Zn(OOCCH2Ph)2(NHC)]2 (4) (NHC=1,3-bis(mesityl)-imidazol-2-ylidene). Reaction of 1 with 2 equivalents of silver trifluoromethanesulfonate yielded monomeric Zn(O3SCF3)2(NHC)(THF) (5), reaction of 1 with sodium {[R(+)-α-2-(1-phenyl-ethylimino)-methyl]-phenolate} yielded monomeric ZnCl(OC6H4-2-CHN(CHPhCH3)(NHC) (6). Compounds 1, 4-6 were structurally characterized by X-ray analysis. Selected compounds were investigated for their activity in the copolymerization of carbon dioxide with cyclohexene oxide as well as in the ring-opening polymerization of cyclohexene oxide and ε-caprolactone.  相似文献   

11.
The caffeine-derived N-heterocyclic carbene (NHC) complex [Pt(II)(C^N)(NHC)Cl] (C^N = 2-phenylpyridine), 4 has the opposite stereochemistry and a shorter Pt-C(carbene) bond compared to that of an analogous benzimidazole-derived N,N-heterocyclic carbene (NNHC) Pt complex 2. These suggest a lower trans influence of pyridyl N compared to cyclometallated carbon and an increased Pt-NHC π-backbonding because of decreased π-donation resulting from conjugation to the electron deficient pyrimidine of caffeine. Complex 4 has a lower emission quantum yield (Φ) and is blue-shifted into the green region of the visible spectrum relative to non-carbene Pt(II) cyclometalated complex 5.  相似文献   

12.
Bis(imino)aryl NCN pincer Ni(II) complexes 2,6-(ArN=CH)(2)C(6)H(3)NiBr (1: Ar = 2,6-Me(2)C(6)H(3); 2: Ar = 2,6-Et(2)C(6)H(3); 3: Ar = 2,6-(i)Pr(2)C(6)H(3)) were prepared via the oxidative-addition of Ni(0)(Ph(3)P)(4) with bis(N-aryl)-2-bromoisophthalaldimine. These nickel complexes were characterized by NMR and elemental analyses. Their solid molecular structures were established by X-ray diffraction analyses. The nickel metal centers adopt distorted square planar geometries with the bromine atoms acting as one coordinate ligands. The NCN pincer Fe(II) complexes 2,6-(ArN=CH)(2)C(6)H(3)Fe(μ-Cl)(2)Li(THF)(2) (4: Ar = 2,6-Me(2)C(6)H(3); 5: Ar = 2,6-Et(2)C(6)H(3); 6: Ar = 2,6-(i)Pr(2)C(6)H(3)) were synthesized by lithium salt metathesis reactions of the ligand lithium salts with FeCl(2). X-ray structure analyses of 4 and 5 revealed that the Fe(II) complexes are hetero-dinuclear with the iron atoms in trigonal bipyramidal environments. When activated with MAO, the nickel complexes are active for norbornene vinyl polymerization but are inert for butadiene polymerization. The Fe(II) complexes show moderate activities in butadiene polymerization when activated with alkylaluminium, affording the cis-1,4 enriched polymer.  相似文献   

13.
New thioether-phosphanes 2-RSC6H4CH2PPh2(RS-PPh2: R = Me, tBu, Ph) and the corresponding complexes [PdCl2(MeS-PPh2)], [PdCl2(tBuS-PPh2)], [PdCl2(PhS-PPh2)], [PdClMe(MeS-PPh2)] and [PtMe2(MeS-PPh2)] have been prepared, characterized and the X-ray crystal structures of all complexes determined. Whilst Pd(II) complexes of RS-PPh2 show low activity for CO/ethene copolymerisation, the complexes [PdCl2(RS-PPh2)] have been found to be very efficient for the Heck arylation of n-butylacrylate with bromobenzene under aerobic conditions.  相似文献   

14.
The pincer complex [(POCOP)Ni(NCMe)][OSO2CF3] (1: POCOP = {2,6-(i-Pr2PO)2C6H3}) undergoes an acetonitrile substitution reaction in the presence of CN(t-Bu), KCN, and KOCN to give the new complexes [(POCOP)Ni{CN(t-Bu)}][O3SCF3] and (POCOP)Ni(X) (X = CN and NCO). The Ni-CN derivative is also obtained from a gradual decomposition of the Ni-CN(t-Bu) derivative, while the aquo derivative [(POCOP)Ni(OH2)][O3SCF3] was obtained from slow hydrolysis of (POCOP)Ni(OSO2CF3). All new complexes have been characterized spectroscopically and by X-ray crystallography. IR and solid state structural data indicate that Ni-L/X interactions are dominated by ligand-to-metal σ-donation; presence of little or no π-backbonding is consistent with the electrophilicity of the cationic fragment [(POCOP)Ni]+.  相似文献   

15.
Three isostructural disklike heptanuclear FeIII compounds of the general formula [FeIII7(mu3-O)3(L)3(mu-O2CCMe3)6(eta1-O2CCMe3)3(H2O)3], where L represents a di- or triethanolamine moiety, display a three-blade propeller topology, with the central Fe atom representing the axle or axis of the propeller. This motif corresponds to the theoretical model of a frustrated Heisenberg star, which is one of the very few solvable models in the area of frustrated quantum-spin systems and can, furthermore, be converted to an octanuclear cage for the case where L is triethanolamine to give [FeIII8(mu4O)3(mu4-tea)(teaH)3(O2CCMe3)6(N3)3].1/2MeCN.1/2H2O or [FeIII8(mu4O)3(mu4-tea)(teaH)3(O2CCMe3)6(SCN)3].2MeCN when treated with excess NaN3 or NH4SCN, respectively. The core structure is formally derived from that of the heptanuclear compounds by the replacement of the three aqua ligands by an {Fe(tea)} moiety, so that the 3-fold axis of the propeller is now defined by two central FeIII atoms. Magnetic studies on two of the heptanulcear compounds established unequivocally S = 5/2 spin ground state for these complexes, consistent with overall antiferromagnetic interactions between the constituent FeIII ions.  相似文献   

16.
17.
This work describes preparation and reaction chemistry of a terminal nickel(II) anilide complex supported by an unsymmetrically substituted diarylamido diphosphine ligand, [N(o-C(6)H(4)PPh(2))(o-C(6)H(4)P(i)Pr(2))](-) ([Ph-PNP-(i)Pr](-)). Treatment of NiCl(2)(DME) with H[Ph-PNP-(i)Pr] in THF at room temperature produced [Ph-PNP-(i)Pr]NiCl as green crystals in 82% yield. Salt metathesis of [Ph-PNP-(i)Pr]NiCl with LiNHPh(THF) in THF at -35 °C generated cleanly [Ph-PNP-(i)Pr]NiNHPh as a greenish blue solid. The anilide complex deprotonates protic (e.g., PhOH and PhSH) and aprotic (e.g., trimethylsilylacetylene, phenylacetylene, and acetonitrile) acids in benzene at room temperature to give quantitatively [Ph-PNP-(i)Pr]NiX (X = OPh, SPh, C≡CSiMe(3), C≡CPh, CH(2)CN). In addition, [Ph-PNP-(i)Pr]NiNHPh also behaves as a nucleophile to react with acetyl chloride to yield [Ph-PNP-(i)Pr]NiCl and N-phenylacetamide quantitatively. Carbonylation of [Ph-PNP-(i)Pr]NiNHPh with carbon monoxide affords cleanly the carbamoyl derivative [Ph-PNP-(i)Pr]Ni[C(O)NHPh]. The relative bond strengths of Ni-E in [Ph-PNP-(i)Pr]NiEPh (E = NH, O, S, C≡C) are assessed and discussed.  相似文献   

18.
19.
The ligand 1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene, 3, was used to synthesize a mononuclear Rh(II) complex [(eta(1):eta(6):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh][PF(6)](2), 6+, in a two-legged piano-stool geometry. The structural and electronic properties of this novel complex including a single-crystal EPR analysis are reported. The complex can be cleanly interconverted with its Rh(I) form, allowing for a comparison of the structural properties and reactivity of both oxidation states. The Rh(I) form 6 reacts with CO, tert-butyl isocyanide, and acetonitrile to form a series of 15-membered mononuclear cyclophanes [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(3)][PF(6)] (8), [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CNC(CH(3))(3))(2)][PF(6)] (10), and [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(CH(3)CN)][PF(6)] (11). The Rh(II) complex 6+ reacts with the same small molecules, but over shorter periods of time, to form the same Rh(I) products. In addition, a model two-legged piano-stool complex [(eta(1):eta(6):eta(1)-1,4-bis[3-(diphenylphosphino)propoxy]-2,3,5,6-tetramethylbenzene)Rh][B(C(6)F(5))(4)], 5, has been synthesized and characterized for comparison purposes. The solid-state structures of complexes 5, 6, 6+, and 11 are reported. Structure data for 5: triclinic; P(-)1; a = 10.1587(7) A; b = 11.5228(8) A; c = 17.2381(12) A; alpha = 96.4379(13) degrees; beta = 91.1870(12) degrees; gamma = 106.1470(13) degrees; Z = 2. 6: triclinic; P(-)1; a = 11.1934(5) A; b = 12.4807(6) A; c = 16.1771(7) A; alpha = 81.935(7) degrees; beta = 89.943(1) degrees; gamma = 78.292(1) degrees; Z = 2. 6+: monoclinic; P2(1)/n; a = 11.9371(18) A; b = 32.401(5) A; c = 12.782(2) A; beta = 102.890(3) degrees; Z = 4. 11: triclinic; P(-)1; a = 13.5476(7) A; b = 13.8306(7) A; c = 14.9948(8) A; alpha = 74.551(1) degrees; beta = 73.895(1) degrees; gamma = 66.046(1) degrees; Z = 2.  相似文献   

20.
The synthesis of novel 1,3-diaryl- and 1,3-dialkylpyrimidin-2-ylidene-based N-heterocyclic carbenes (NHCs) and their rhodium(i) and palladium(II) complexes is described. The rhodium compounds bromo(cod)[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene]rhodium (7), bromo(cod)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)rhodium (8) (cod=eta(4)-1,5-cyclooctadiene, mesityl=2,4,6-trimethylphenyl), chloro(cod)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)rhodium (9), and chloro(cod)[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene]rhodium (10) were prepared by reaction of [[Rh(cod)Cl](2)] with lithium tert-butoxide followed by addition of 1,3-dimesityl-3,4,5,6-tetrahydropyrimidinium bromide (3), 1,3-dimesityl-3,4,5,6-tetrahydropyrimidinium tetrafluoroborate (4), 1,3-di-2-propyl-3,4,5,6-tetrahydropyrimidinium bromide (6), and 1,3-di-2-propyl-3,4,5,6-tetrahydropyrimidinium tetrafluoroborate, respectively. Complex 7 crystallizes in the monoclinic space group P2(1)/n, and 8 in the monoclinic space group P2(1). Complexes 9 and 10 were used for the synthesis of the corresponding dicarbonyl complexes dicarbonylchloro(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)rhodium (11), and dicarbonylchloro[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene]rhodium (12). The wavenumbers nu(CO I)/nu(CO II) for 11 and 12 were used as a quantitative measure for the basicity of the NHC ligand. The values of 2062/1976 and 2063/1982 cm(-1), respectively, indicate that the new NHCs are among the most basic cyclic ligands reported so far. Compounds 3 and 6 were additionally converted to the corresponding cationic silver(i) bis-NHC complexes [Ag(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(2)]AgBr(2) (13) and [Ag[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene](2)]AgBr(2) (14), which were subsequently used in transmetalation reactions for the synthesis of the corresponding palladium(II) complexes Pd(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(2) (2+)(Ag(2)Br(2)Cl(4) (4-))(1/2) (15) and Pd[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene)(2)]Cl(2) (16). Complex 15 crystallizes in the monoclinic space group P2(1)/c, and 16 in the monoclinic space group C(2)/c. The catalytic activity of 15 and 16 in Heck-type reactions was studied in detail. Both compounds are highly active in the coupling of aliphatic and aromatic vinyl compounds with aryl bromides and chlorides with turnover numbers (TONs) up to 2000000. Stabilities of 15 and 16 under Heck-couplings conditions were correlated with their molecular structure. Finally, selected kinetic data for these couplings are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号