首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
A σ-hole is defined as an electron-deficient region on the extension of a covalently bonded group IV–VII atoms. If the electronic density in the σ-hole is sufficiently low, then this region will have a positive electrostatic potential, which allows attractive noncovalent interactions with negative sites. SO2X2 and SeO2X2 (X = F, Cl and Br) have three Lewis acid sites of σ-hole located in the outermost of chalcogen atom and X end, participating in the chalcogen and halogen bonds with NH3 and H2O, respectively. MP2/aug-cc-pVTZ and M06-2X/aug-cc-pVTZ calculations reveal that for a given halogen atom, SeO2X2 forms stronger chalcogen bond interactions than SO2X2 counterpart. Almost a perfect linear relationship is evident between the interaction energies and the magnitudes of the product of most positive and negative electrostatic potentials. The interaction energies calculated by M06-2X and MP2 methods are almost consistent with each other.  相似文献   

2.
A density functional theory study was performed on fullerene derivatives C60X18 and C70X10 (X = H, F, Cl, and Br). The calculated results show that the lowest energy isomers are IPR-satisfying for C60X18 (X = H, F, Cl, and Br). It is found that the addition patterns of X (X = Cl and Br) are different from those of X (X = H and F) for C60, demonstrating that the stability of fullerene derivatives is partly attributed to the steric repulsion and electronegativity of added atoms. However, the lowest energy isomers are IPR-violating for C70X10 (X = H, F, and Cl), suggesting that many more fullerene derivatives may violate the isolated pentagon rule.  相似文献   

3.
The reactions of OH (OD) radicals with CF2ClCClFH (R1), CF2ClCCl2H (R2), CFCl2CClFH (R3), and CFCl2CCl2H (R4) have been investigated theoretically by a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MPW1K/6-311+G(d,p) level. To improve the reaction enthalpy and potential barrier of each reaction channel, the single-point energy calculation is made by the MC-QCISD method. The enthalpies of formation of the species CF2ClCClFH, CF2ClCCl2H, CFCl2CClFH, CFCl2CCl2H, CF2ClCClF, CF2ClCCl2, CFCl2CClF, and CFCl2CCl2 are evaluated by two sets of isodesmic reactions. Using canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) method, the rate constants of OH and OD radicals with CF2ClCClXH (X = F, Cl) and CFCl2CClXH (X = F, Cl) are evaluated over a wide temperature range of 100–2,000 K at the MC-QCISD//MPW1K/6-311+G(d,p) level. The calculated CVT/SCT rate constants are consistent with available experimental data. The results show that the tunneling correction has an important contribution in the calculation of rate constants at lower temperatures. For the above-mentioned four reactions, the kinetic isotope effects are also calculated. Finally, the effect of fluorine or chlorine substitution on reactivity of the C–H bond is discussed.  相似文献   

4.
We have applied density functional calculations to study reactions SiX3 + Si20X20, and CX3 + Si20X20 (X = H, F) based on two reaction channels (H- or F-abstraction and H-or F-displacement from Si20H20 and Si20F20). Our results show that SiX3 radicals prefer the hydrogen or halogen atom abstraction from Si20H20 and Si20F20 fullerenes. The exothermic reaction channels are proceed via reactant-like transition states i.e. the elongation of the breaking bonds of transition states is smaller than that of their forming bonds. Among the mentioned reaction channels, the reactions of SiF3 radical with Si20F20 and CF3 radical with Si20H20 are most favorable both thermodynamically and kinetically with the lowest barrier height exothermic character. Generally, the reactions of Si20H20 and Si20F20 with SiF3 radical are more favorable than SiH3 radical and the reaction of CH3 and CF3 radicals with Si20H20 fullerenes is more favorable than SiH3 and SiF3 radicals. These results are in agreement with the electrostatic surface potentials of reactants.  相似文献   

5.
Four structural models of volborthite Cu3(OH)2(V2O7)·2H2O (a = 10.646(2) Å, b = 5.867(1) Å, c = 14.432(2) Å, β = 95.19(1)°, V = 897.7(5) Å3, Z = 4, R/R w = 0.038/0.046) calculated in the space groups determined from the systematic absences are compared. Based on the structure balance and the similarity of constituting polyhedra, values of the R factor, and isotropic thermal parameters, the space group Ia is found to be preferable, which is the only possible asymmetric and uniform variant. Hydrogen atoms of OH-groups, oxygen atoms and, partially, hydrogen atoms of water are localized.  相似文献   

6.
The single crystals of Rb2[(UO2)2(C2O4)2(SeO4)] · 1.33H2O were synthesized and studied by X-ray diffraction. The crystals are monoclinic, space group P21/m, Z= 2, the unit cell parameters: a = 5.6537(8), b = 18.736(3), c = 9.4535(15) Å, β = 98.440(5)°, V = 990.6(3) Å3, R 1 = 0.0506. The main structural units of the crystal are infinite layers of [(UO2)2(C2O4)2(SeO4)]2?, corresponding to the crystal chemical group A2K 2 02 B2 (A = UO 2 2+ , K02 = C2O 4 2? , B2 = SeO 4 2? ) of uranyl complexes. The uranium-containing layers are united into a three-dimensional framework through the electrostatic interactions with the outer-sphere rubidium ions and the hydrogen bonding system involving the outer-sphere water molecules.  相似文献   

7.
Sodium aluminophosphate samples with composition 43.8Na2O12.5Al2O343.8P2O5 were prepared by the sol–gel route using different precursors and working in different pH ranges from pH < 1 up to pH > 10. The structures of the gels and of the corresponding glasses were investigated by solid state NMR and compared to that of a glass with the same composition prepared by a traditional melting process. In addition to bulk materials, thin films were deposited by dip coating on silica glasses. Applying secondary neutral mass spectrometry (SNMS), the expected elements and residual carbon were identified. The surfaces of the coatings and fracture surfaces of bulk material were investigated using atomic force microscopy (AFM). Solid state NMR revealed that samples prepared via a lactate route exhibited local Al and P environments closest to that of the melt-prepared glass, with the highest extent of Al-O-P connectivity.  相似文献   

8.
Binuclear iron nitrosyl complex Na2[Fe2(S2O3)2(NO)4] · 4H2O (I) was synthesized by the reaction of iron(II) sulfate with sodium thiosulfate in the flow of NO gas. According to X-ray diffraction data, the [Fe2(S2O3)2(NO)4]2– anion has binuclear centrosymmetric structure with Fe atoms bonded by the µ-S atoms of thiosulfate groups. The isomeric shift for complex I =0.168(1) mm/s and quadrupole splitting E Q =1.288 mm/s at T=80 K. When heated, complex I transforms to Na2[Fe2(S2O3)2(NO)4] (II), whose unit cell parameters found by X-ray diffraction method differ from those of complex I. The process of transformation of I to II was studied by calorimetric method. Complex I transforms to complex II without chemical decomposition, which was confirmed by IR and mass spectroscopy data.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 5, 2005, pp. 323–328.Original Russian Text Copyright © 2005 by Sanina, Aldoshin, Rudneva, Golovina, Shilov, Shulga, Martynenko, Ovanesyan.  相似文献   

9.
The crystal structure of a double complex salt of the composition [Au(en)2]2[Cu(C2O4)2]3·8H2O (en = ethylenediamine) at 150 K is determined by single crystal X-ray diffraction. The crystal data for C20H48Au2Cu3N8O32 are: a = 9.1761(3) Å, b = 16.9749(6) Å, c = 13.4475(5) Å, β = 104.333(1)°, V = 2029.43(12) Å3, P21/c space group, Z = 2, d x = 2.450 g/cm3. It is demonstrated that the thermal decomposition of the double complex salt in a helium or hydrogen atmosphere affords the solid solution Au0.4Cu0.6.  相似文献   

10.
Based on density functional theory (DFT) calculations, we predict that the icosahedral structures of the silicon fullerenes Si60 and Si80 can be stabilized by 12 exohedral pentagons of group V-A unit Pn5 (Pn = P, As, Sb or Bi). The 12 pentagons can fully passivate the dangling bonds associated with 12 pentagonal Si5 rings on the silicon fullerene cages, thereby resulting in stable exohedral silicon fullerenes Si60Pn60 and Si80Pn60. Properties of the eight Si60Pn60 and Si80Pn60 clusters, including harmonic vibrational frequencies, electron affinity (EA), the HOMO–LUMO gap and NICS values, are computed. We find that all eight Si60Pn60 and Si80Pn60 fullerenes possess relatively large HOMO–LUMO gaps, high electron affinities, and that the Si60Pn60 fullerenes exhibit weak aromaticity. Among eight clusters examined, the exohedral fullerene I h-Si60P60 possesses the largest cohesive energy per atom. Ab initio molecular dynamics (AIMD) simulation is performed to demonstrate thermal stability of the hollow cage structure of Si60P60 at the room temperature.  相似文献   

11.
Single crystals of Cs[(UO2)2(C2O4)2(OH)] · H2O were synthesized and structurally studied using X-ray diffraction. The compound crystallizes in monoclinic space group P21/m, Z = 2, with the unit cell parameters a = 5.5032(4) Å, b = 13.5577(8) Å, c = 9.5859(8) Å, β = 97.012(3)°, V = 709.86(9) Å3, R = 0.0444. The main building units of crystals are [(UO2)2(C2O4)2(OH)]? layers of the A2K 2 02 M2 (A = UO 2 2+ , K02 = C2O 4 2? , and M2 = OH?) crystal-chemical family. Uranium-containing layers are linked into a three-dimensional framework via electrostatic interactions with outer-sphere cations and hydrogen bonds with water molecules.  相似文献   

12.
A series of MoO3/ZrO2–Al2O3 catalysts was prepared and investigated in the sulfur-resistant methanation aimed at production of synthetic natural gas. Different methods including impregnation, deposition precipitation, and co-precipitation were used for preparing ZrO2–Al2O3 composite supports. These composite supports and their corresponding Mo-based catalysts were investigated in the sulfur-resistant methanation, and characterized by N2 adsorption–desorption, XRD and H2-TPR. The results indicated that adding ZrO2 promoted MoO3dispersion and decreased the interaction between Mo species and support in the MoO3/ZrO2–Al2O3 catalysts. The co-precipitation method was favorable for obtaining smaller ZrO2 particle size and improving textural properties of support, such as better MoO3 dispersion and increased concentration of Mo6+ species in octahedral coordination to oxygen. It was found that the MoO3/ZrO2–Al2O3 catalyst with ZrO2Al2O3 composite support prepared by co-precipitation method exhibited the best catalytic activity. The ZrO2 content in the ZrO2Al2O3 composite support was further optimized. The MoO3/ZrO2–Al2O3 with 15 wt % ZrO2 loading exhibited the highest sulfur-resistant CO methanation activity, and excess ZrO2 reduced the specific surface area and enhanced the interaction between Mo species and support. The N2 adsorption-desorption results indicated that the presence of ZrO2 in excessive amounts decreased the specific surface area since some amounts of ZrO2 form aggregates on the surface of the support. The XRD and H2-TPR results showed that with the increasing ZrO2 content, ZrO2 particle size increased. These led to the formation of coordinated tetrahedrally Mo6+(T) species and crystalline MoO3, and this development was unfavorable for improving the sulfur-resistant methanation performance of MoO3/ZrO2–Al2O3 catalyst.  相似文献   

13.
14.
Solubility and stability of (NH4)2SO4·H2O2 in organic solvents (glycerol, ethylene glycol, TOSOL-A40 OM antifreeze), in mixtures of an organic solvent and water, and in pure water was studied. Crystallographic properties of the ammonium sulfate precipitating from aqueous-organic solvents and aqueous solutions in various time intervals and differing from ordinary (NH4)2SO4 in solubility and one of crystallographic parameters were analyzed.  相似文献   

15.
Tetra-n-butyl ammonium bromide (TBAB) semi-clathrate (sc) hydrates of gas are of prime importance in the secondary refrigeration domain and in the separation of gas molecules by molecular size. However, there is a scarcity of dissociation enthalpies under pressure of pure gases and gases mixtures for such systems. In addition, the phase equilibrium of TBAB sc hydrates of several pure gases is not well defined yet as a function of the TBAB concentration and as a function of the pressure. In this paper, dissociation enthalpies and the phase equilibrium of TBAB sc hydrates of gas have been investigated by differential scanning calorimetry (DSC) under pressure. Pure gases such as N2 and CO2 and gases mixtures such as N2 +  CO2 and CH4 +  CO2 were studied. To our knowledge, we present the first phase diagram of TBAB sc hydrates of N2 for different pressures of gas in the TBAB concentration range from 0.170 to 0.350 wt. Enthalpies of dissociation of TBAB sc hydrates of pure gases and gases mixtures were determined as a function of the presssure for a compound with a congruent melting point whose hydration number corresponds to 26.  相似文献   

16.
Single crystals of Ba3[UO2(C2O4)2(NCS)]2 · 9H2O are synthesized and studied by X-ray diffraction. The crystals are orthorhombic, space group Fddd, Z = 16, and the unit cell parameters are a = 16.253(3) Å, b = 22.245(3) Å, c = 39.031(6) Å. The main crystal structural units are mononuclear complex groups [UO2(C2O4)2NCS]3? of the crystal-chemical family (AB 2 01 M1 (A = UO 2 2+ , B01 = C2O 4 2? , M1 = NCS?) of the uranyl complexes linked into a three-dimensional framework by electrostatic interactions and hydrogen bonds involving oxalate ions and water molecules.  相似文献   

17.
The non-isothermal kinetics of dehydration of AlPO4·2H2O was studied in dynamic air atmosphere by TG–DTG–DTA at different heating rates. The result implies an important theoretical support for preparing AlPO4. The AlPO4·2H2O decomposes in two step reactions occurring in the range of 80–150 °C. The activation energy of the second dehydration reaction of AlPO4·2H2O as calculated by Kissinger method was found to be 69.68 kJ mol−1, while the Avrami exponent value was 1.49. The results confirmed the elimination of water of crystallization, which related with the crystal growth mechanism. The thermodynamic functions (ΔH*, ΔG* and ΔS*) of the dehydration reaction are calculated by the activated complex theory. These values in the dehydration step showed that it is directly related to the introduction of heat and is non-spontaneous process.  相似文献   

18.
A method for the synthesis of potassium pivalates (trimethylacetates) from potassium tert-butoxide and pivalic acid was proposed. The complexes of the formulas [K(H2O)(Piv)](I) and [K2(Phen)(H2O)2(Piv)2] (II) (Piv denotes the pivalate anion and Phen denotes 1,10-phenanthroline) were obtained and characterized by elemental analysis and IR and 1H NMR spectroscopy. The crystal structures of complexes I and II were determined using X-ray diffraction. Crystal structure I has a layered motif with two nonequivalent K atoms (C.N.s 5 + 2 and 6). The coordination of phenanthroline in II gives rise to a ribbon motif, the structure containing three nonequivalent K atoms (C.N.s 6, 6 + 1, and 8).  相似文献   

19.
The structure of tri-μ2-disulfido-μ3-thiotris(diethyldithiocarbamato)-S,S′-triangle-trimolybdenum iodide [Mo33-S)(μ2-S2)3(Et2NCS2)3]I was determined. The compound was characterized by differential thermal analysis and IR, Raman, and X-ray electronic spectroscopy.  相似文献   

20.
The crystal structure of the double complex salt (DCS) [PdEn2]3[Rh(NO2)6]2 ? 2.67H2O (I) has been determined by X-ray diffraction. Crystals are triclinic, space group \(P\bar 1\), Z = 4, a = 9.2331(3) Å, b = 9.9136(4) Å, c = 13.7824(5) Å, α = 84.3230(14)°, β = 89.9655(14)°, γ = 66.7272(13)°, V = 1152.19(7) Å3, ρcalcd = 2.141 g/cm3, R = 0.0279. The thermal behavior of complex salt I has been studied in various gas atmospheres. The end product of thermolysis in reductive atmosphere is a mixture of Pd0.45Rh0.55 and Pd0.95Rh0.05 solid solutions. The end product of thermolysis in an inert atmosphere is a homogeneous Pd0.6Rh0.4 solid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号