首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two coordination polymers, [Ni(bim)2(L1)(H2O)2] n (CP-1) and [Zn(bim)(L1)(Cl)] n (CP-2) (bim = 1-benzylimidazole, L1 = terephthalic acid), were synthesized and characterized by physicochemical and spectroscopic methods. The Ni(II) center in CP-1 is octahedral, while the Zn(II) center in CP-2 is tetrahedral. CP-1 and CP-2 were used to modify carbon paste electrodes to assess their effect on the electrochemical behavior of ferricyanide. The redox reactions of ferricyanide on both electrodes proved to be reversible and diffusion controlled, with ferricyanide diffusion coefficients for CP-1 and CP-2 of 1.88 × 105 and 3.44 × 105 cm2 s?1, respectively. These coordination polymers were also investigated for their adsorption behavior toward two dyes: Chicago sky blue and methylene blue. CP-1 and CP-2 both rapidly adsorbed the anionic Chicago sky blue dye by different intermolecular interactions; in contrast, the cationic methylene blue dye was adsorbed to a lesser extent. The adsorption of these CPs depends on the charge but not the size of the dye. Addition of methanolic potassium nitrate solution caused the release of the adsorbed dyes.  相似文献   

2.
Reactions of the substituted tetramethylcyclopentadienes [C5HMe4R] [R =  t Bu, Ph, CH2CH2C(CH3)3] with Mo(CO)3(CH3CN)3 in refluxing xylene gave a series of dinuclear molybdenum carbonyl complexes [(η5-C5Me4R)Mo(CO)3]2 [R =  t Bu (1), Ph (2), CH2CH2C(CH3)3 (3)], [(η5-C5Me t Bu)Mo(μ-CO)2]2 (4)], and [(η5-C5Me4) t Bu]2Mo2O4(μ-O) (5)], respectively. Complexes 15 were characterized by elemental analysis, IR, 1H NMR, and 13C NMR spectroscopy. In addition, their crystal structures were determined by X-ray crystal diffraction analysis. The catalytic activities of complexes 13 in Friedel–Crafts acylation in the presence of o-chloranil has also been investigated; the reactions were achieved under mild conditions to give the corresponding products in moderate yields.  相似文献   

3.
Two coordination polymers (CPs), namely [Ni(L)(chdc)] n (1) and [Mn(L)(ndc)(H2O)] n (2) (L = 4,4′-bis(imidazol-1-ylmethyl)biphenyl, H2chdc = 1,2-cyclohexanedicarboxylic acid, H2ndc = 2,6-naphthalenedicarboxylic acid), have been hydrothermally synthesized and characterized by physicochemical and spectroscopic methods and also by single-crystal diffraction. Both CPs feature 3D-diamond-like networks with point symbol of 66; CP-1 displays a 2-fold interpenetrated net, while CP-2 presents a non-interpenetrated framework. The thermal stabilities, solid-state luminescence properties and catalytic activities of both CPs for degradation of methyl orange in a Fenton-like process were investigated.  相似文献   

4.
Five novel bridged heptaphenyl polyhedral oligomeric silsesquioxanes (POSSs), in which two identical silicon cages R7(SiO1.5)8 (with R = Phenyl) are linked to various aliphatic [(CH2) n with n = 2, 6 and 10] and aromatic (Ar–Ar and Ar–O–Ar, where Ar = p-C6H4) bridges, were synthesized. The obtained compounds were characterized by elemental analysis and 1 H NMR spectroscopy, and the results were in very good agreement with those of expected products. The synthesized heptaphenyl POSSs were thermally degraded, in dynamic heating conditions (25–700 °C), in both flowing nitrogen and static air atmosphere. The temperatures at 5% mass loss (T 5%) and residues at 700 °C were thus determined to evaluate their resistance to thermal degradation, but no substantial difference was found between the values in the two studied environments. The obtained T 5% values were much higher than those of the corresponding isobutyl and cyclopentyl POSSs we investigated in the past. Also, the T 5% values of the phenyl POSSs with aliphatic bridges decreased quite linearly on increasing the number of bridge carbon atoms (n C). This behaviour was interpreted and attributed to the presence of the external corona formed by voluminous phenyl groups. The residue at 700 °C, which was largely higher than those of the corresponding isobutyl and cyclopentyl POSSs, was a further confirmation of the better thermal stability of the compounds here studied.  相似文献   

5.
A series of six alkyl-substituted tetramethylcyclopentadienyl mononuclear metal carbonyl complexes [(η 5-C5Me4R)Re(CO)3] [R = allyl (1), i-Pr (2), n-butyl (3), t-butyl (4), benzyl (5), CH(CH2)4 (6)] have been synthesized by treating the corresponding ligands (C5Me4R) [R = allyl, i-Pr, n-butyl, t-butyl, benzyl, CH(CH2)4] with Re2(CO)10 in refluxing xylene. The six new complexes were characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The crystal structures of all six complexes were determined by X-ray crystal diffraction analysis, showing that they have similar molecular structures, being mononuclear carbonyl complexes. In each of these complexes, the Re atom is η 5 -coordinated to the cyclopentadienyl ring. Complexes 15 have significant catalytic activity in Friedel–Crafts reactions of aromatic compounds with alkylation reagents. Compared with traditional catalysts, these mononuclear rhenium carbonyl complexes have obvious advantages such as lower amounts of catalyst, mild reaction conditions and environmentally friendly chemistry.  相似文献   

6.
Quantum chemical calculations of structure and energies of various H-bonded complexes of phosphoric, phosphorous and methylphosphonic acids and their dimers with dimethylsulfoxide (DMSO), i.e., (acid) n –DMSO and acid–(DMSO) m for n = 1, 2 and m = 2, 3 have been carried out. The polar solvent effect is taken into account by using the CPCM model. It has been found that in DMSO environment the H-bonds in all complexes of investigated acid with DMSO are sizably stronger than the ones in the gas phase. At B3LYP-CPCM computation, the H-bonds between all investigated acid dimers and DMSO are significantly shorter than those found for complexes of corresponding acids with other compositions. The H-bonding interaction in acid–(DMSO) m for m = 1–3 becomes slightly weaker with increasing number DMSO molecules. The strength of the H-bond in all investigated complexes increases in the series of acids: (HO)2MePO < (HO)2P(O)H < H3PO4. Additionally, quantum theory of ‘atoms in molecules’ and natural bond orbitals method have been applied to analyze H-bond interactions.  相似文献   

7.
In the present work, we synthesized 2,4,6-trinitro-3,5-dimethylbenzoic acid (TNDMBA). Single crystal of TNDMBA·H2O was cultured from aqueous solution using a slow evaporation method at 30°C. The crystal structure was determined by X-ray single-crystal diffraction analysis. The crystal belongs to the monoclinic system with space group P2(1)/c having unit cell parameters of a = 17.24(3) Å, b = 6.032(1) Å, and c = 16.359(4) Å. There are two kinds of intermolecular H-bond interactions between H2O and TNDMBA, which is different from typical carboxylic acids that form H-bond dimers across crystallographic centers of inversion. The title compound was characterized by FT-IR, DSC, and TG-DTG technologies, and calculated by using density functional theory (DFT) method. The calculated results show that the structural parameters from the theory are close to those of the crystal structure from the experiments. The compound is composed of three nitro groups and one carboxyl group, and it can be used as a potential energetic combustion catalyst in industry.  相似文献   

8.
A coordination polymer of formula [Cu(μ 1,3-N3)2(imH)2] n (1) has been synthesized by reaction of Cu(NO3)2 with imidazole and sodium azide in CH3OH/CH3CN. The complex was characterized by FTIR, elemental analysis, powder diffraction, thermogravimetric analysis, magnetic measurements, and single-crystal X-ray diffraction. The X-ray crystal structure shows that the Cu(II) centers have a distorted octahedral coordination geometry, being coordinated by two imidazole ligands at the trans positions. Each azide links two [Cu(imH)2]2+ units to form 1D zigzag chains. Variable-temperature magnetic susceptibility studies at low field reveal dominant intrachain ferromagnetic/antiferromagnetic interactions. Using a model with n = 10, the coupling parameters J AF = ?2.95 and J F = 17.99 with g = 2.12 have been determined.  相似文献   

9.
Eight new compounds, M(pyca(CH2)xCOOR)Cl2, M = Pd, Pt; R = Me, Et; x = 2, 3, 5, 11, were prepared. The resulting new complexes were characterized by 1H and 13C NMR spectroscopy and each was also structurally elucidated by X-ray crystallography. The compounds share general structural features, but there are differences in the alignment of the alkyl chain; as the chain lengthens, the chain straightens relative to the plane of the metal complex. For the dodecanoic ester derivatives, a nearly linear alkyl chain was observed. These longer alkyl derivatives show mesogenic behavior.  相似文献   

10.
N 1,N 1,N 2,N 2-tetramethylethane-1,2-diamine-based ionic salts (TMEDA), N 1,N 1,N 1,N 2,N 2,N 2-hexamethylethane-1,2-diaminium dicyanamide (HMEDA-(DCA)2) were prepared following the quaternization and subsequent ion exchange. The chemical structure of the HMEDA-(DCA)2 was confirmed using 13C NMR spectrum and elemental analysis. The corresponding viscosity of its 60 wt% solution was found to be lower than 5 cP at room temperature, which was critical for propellant application. The ignition delay of 40 wt% HMEDA-(DCA)2 solution was decreased to 20–30 ms dramatically using alkali metal salts, Li(CH3COO), Mg(CH3COO)2, and Ca(CH3COO)2 as a co-catalyst when white fume nitric acid was utilized as an oxidizer.  相似文献   

11.
Procedures for preparing polyfluorinated ethers H(CF2CF2) n CH2OR by alkylation of the corresponding telomeric alcohols H(CF2CF2) n CH2OH (n = 1–3) with alkyl halides and alkyl tosylates were examined.  相似文献   

12.
In this article, we investigated the effect of mixed thiols (HS(CH2)5CH3, HS(CH2)6OH and HS(CH2)2NH2) on the adsorption, capacitive and hybridization performance of thiol-modified probe DNA self-assembled monolayers on gold by chronocoulometry (CC) and cyclic voltammetry (CV). Co-assembly of HS(CH2)5CH3 with probe DNA availed DNA surface adsorption on gold more than HS(CH2)6OH and HS(CH2)2NH2. With the increase of the assembly concentration ratio of probe DNA and mixed thiols (C DNA/C thiols), DNA surface coverage (Γ m) was almost constant for DNA/HS(CH2)5CH3 mixed SAMs and increased gradually for DNA/HS(CH2)6OH or DNA/HS(CH2)2NH2 mixed SAMs. Interfacial capacitance (C d) value of DNA/thiol-mixed SAMs on gold mainly depended on the capacitance of thiols SAMs. DNA hybridization almost did not change the capacitance value of DNA/thiol-mixed SAMs on gold. Hybridization experiments indicated that the maximal DNA hybridization density (H D) was 1.2 × 10?11 and 1.1 × 10?11 mol cm?2 with HS(CH2)5CH3 or HS(CH2)6OH as mixed thiols respectively, much bigger than that with short-chain thiols (HS(CH2)2NH2). The size fitting coefficient d c/d t values for the optimal hybridization of DNA/HS(CH2)5CH3 and DNA/HS(CH2)6OH mixed SAMs were 0.70 and 0.93, respectively. This indicated that probe DNA with much bigger Γ m should be co-assembled with HS(CH2)5CH3 on gold to obtain the biggest H D than with HS(CH2)6OH. These conclusions provided the important reference for optimally designing DNA sensor.  相似文献   

13.
Density functional theory and ab initio computations elucidated the ring-opening of substituted (R = –CF3, –CN, –CH3, –H, –NH2, –OCH3, –OH, –SiH3) 1-bromo–1-lithiosilirane 1 and 2-bromo–2-lithiosilirane 2 to LiBr complexes of 2-silaallene and 1-silaallene, respectively. Formally, two competitive pathways can be considered. The ring-opening reaction can take place through a concerted manner via TS3. Alternatively, the reaction may proceed in a stepwise fashion with the intermediacy of a free silacyclopropylidene–LiBr complex 7. In both cases, the position of the substituents determines the kinetic of the reactions. The structures with an electron-donating group are generally unstable, whereas the silacyclopropylidenoids bearing electron-withdrawing substituents are particularly stable species. Here, we propose the ring-opening of 5ah to corresponding LiBr complexes of 2-silaallenes can proceed in both concerted and stepwise mechanism except for –H, –CH3, and –SiH3. The obtained activation energies for the ring-openings of 5ah to related 2-silaallenes are too high for a reaction at room temperature with up to 61.4 kcal/mol. In contrast, the activation energy barriers for the isomerization of 6ah to the LiBr complexes of 1-silaallenes was determined to be relatively low at the B3LYP/6-31+G(d,p), M06/6-31+G(d,p), and MP2/6-31+G(d,p) levels. Moreover, we have also investigated the solvent effect on the unsubstituted models using both implicit and explicit solvation models. The energy barriers of the solvated models are found to be slightly higher than the results of gas phase calculations. Additionally, the ring-opening of dimer 6 (6Dim) is also calculated for the ring-opening mechanism with the energy barrier of 3.7 kcal/mol at B3LYP/6-31+G(d,p) level of theory.  相似文献   

14.
Reactions between the C,C′-dicopper(I) derivative of ortho-carborane and ortho-, meta- and para-diiodobenzene are reported. The reaction with 1,2-C6H4I2 unexpectedly afforded 2,2′-bis(1′-ortho-carboranyl)biphenyl, [HCB10H10CC6H4]22, whereas reactions with 1,3- or 1,4-C6H4I2 provided alternative routes to 1,3-bis(1′-ortho-carboranyl)benzene 3 and 1,4-bis(1′-ortho-carboranyl)benzene 4, respectively. The crystal structure of the biphenyl derivative 2 revealed significant distortions in the biphenylene framework attributable to the proximity of the two bulky carborane cages. UV absorption spectra and electrochemical data on 2 and 3 showed little electronic communication between the two carborane cages in either, and negligible π-conjugation between the two ortho-phenylene rings in 2. However, substantial evidence was found of electronic communication between the carborane cages via the para-phenylene bridge in 4. B3LYP/6-31G computations have been carried out on compounds 2 and 4, on 4,4′-bis(ortho-carboranyl)biphenyl 6 and on 1,2-bis(1′-ortho-carboranyl)benzene 7. Those on 2, 4 and 6 show the computed geometries to be in very good agreement with the experimental geometries: those on 7 allowed the reported molecular geometry of this compound to be revised and revealed a long cage C–C bond of 1.725(3) Å.  相似文献   

15.
Crystal structures are determined (Bruker Nonius X8 Apex, 4K CCD-detector, λMoK α, graphite monochromator, T 150 K and 293 K) for two β-diketones F3CC(O)CH2C(O)Ph (1) (space group P21/c, a = 7.0713(3)Å, b = 11.5190(6)Å, c = 11.3602(6) Å, β = 99.405(2)°, V = 912.90(8) Å3, Z = 4), (CH3)3CC(O)CH2C(O)C(CH3)3 (2) (space group Pbca, a = 11.5536(8) Å, b = 11.5796(10) Å, c = 17.2523(13) Å, V = 2308.1(3) Å3, Z = 8) and a ketoimine (CH3)3CC(NCH3)CH2C(O)C(CH3)3 (3) (space group I41/a, a = 18.7687(6) Å, b = 18.7687(6) Å, c = 14.5182(6) Å, V = 5114.2(3) Å3, Z = 16). All structures are molecular and comprise isolated molecules joined by van der Walls interactions. The substitution energy of a Na atom for a hydrogen atom in free ligands is calculated by the hybrid B3LYP quantum chemical method. A successful preparation of Na(I) chelates with ligands 1, 2 and failed attempts to prepare a complex with ligand 3 are in accordance with the calculations. Geometrical simulation of a copper(II) complex with ligand 3 reveals the overlap of CH3 groups which hinders the complexation.  相似文献   

16.
The thermal decomposition of nitropropane (CH3CH2CH2NO2) has been investigated at the CBS-QB3 level of theory. The pyrolysis of CH3CH2CH2NO2 mainly includes the simple bond ruptures mechanism, hydrogen abstraction processes, isomerization and secondary reactions. As a result, for the simple bond ruptures mechanism, the formation of \({\text{CH}}_{3} {\text{CH}}_{2} {\text{CH}}_{2}^{\cdot} +\,^{\cdot}{\text{NO}}_{2}\) products is dominant with the energy barrier of 49.77 kcal mol?1. The process of H atom on the β–CH2 abstracted by one O atom of NO2 moiety in CH3CH2CH2NO2(CH3CH2CH2NO2 → CH3CH=CH2 + HONO) needs to overcome lower energy barrier than that of the rate-determining step (one of H atom on the α-CH2 and γ-CH3 abstracted of reaction) of the other hydrogen abstraction reactions. Therefore, we predict that the corresponding alkenes and HONO are the main products in the hydrogen abstraction reaction of nitroparaffin. Besides, the channel of the CH3CH2CHO + HNO formations (CH3CH2C(α)H2NO2 → CH3CH2C(α)H2ONO → CH3CH2CHO + HNO), occurring through the H atom of C(α) abstracted by the N atom of NO2 moiety after the isomerization reaction from CH3CH2CH2NO2 to CH3CH2CH2ONO, is favorable in the isomerization secondary reactions. Rate constants and branching ratios are estimated by means of the conventional transition state theory with zero curvature tunneling over the temperature range of 400–1500 K. The calculation shows that the overall rate constant in the temperature of 400–1500 K is mainly dependent on the competitive channels of formations of CH3CH=CH2 + HONO and \({\text{CH}}_{3} {\text{CH}}_{2} {\text{CH}}_{2}^{\cdot} +\,^{\cdot}{\text{NO}}_{2}\) The three-parameter expression for the total rate constant is fitted to be k total = 1.74 × 10?13 T 8.20exp(17038.7/T) (s?1) between 400 and 1500 K.  相似文献   

17.
The reaction on 8-hydroxy quinoline-7-aldehyde azo compounds (HL n ) (where n = 1–5) with 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one to obtain HL n (where n = 6–10) have been characterized by means of TLC, melting point and spectral data, such as IR, 1H NMR, mass spectra and thermal studies. The X-ray diffraction patterns of two starting materials 8-hydroxy quinoline-7-aldehyde (start 1), 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (start 2) and the ligands (HL5,10) are investigated in powder form. All the ligands have been screened for their antimicrobial activity against four local bacterial species, two Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) as well as against four local fungi; Aspergillus niger, Alternaria alternata, Penicillium italicum and Fusarium oxysporium. The results show that the azo ligands (HL n ) (where n = 1–5) have no antimicrobial activity against bacteria and fungi while most azomethine ligands (HL n ) (where n = 6–10) are good antibacterial agents against E. coli and K. pneumoniae as well as antifungal agents against P. italicum and A. alternata. The results were compared to standard substances (start 1) and (start 2). Among the azomethine ligands, HL10 was the most effective against the most microorganisms tested. The size of clear zone was ordered as p-(OCH3 < CH3 < H < Cl < NO2) as expected from Hammett’s constant (σ R ). Also, the ultrastructure study of the affected bacteria confirmed that HL8 is good antibacterial agent against E. coli and S. aureus.  相似文献   

18.
Thermal treatment of three monobridged biscyclopentadienes (C5H5)R(C5H5) [R = C(CH3)2 (1), C(CH2)5 (2), Si(CH3)2 (3)] with Re2(CO)10 in refluxing mesitylene gave the corresponding complexes [(η 5-C5H4)2R][Re(CO)3]2 [R = C(CH3)2 (4), C(C5H10) (5), Si(CH3)2 (6)], which were separated by chromatography, and characterized by elemental analysis, IR, and 1H NMR spectroscopy. The molecular structures of complexes 5 and 6 were characterized by X-ray crystal diffraction analysis and show that both are monobridged bis(cyclopentadienyl)rhenium carbonyl complexes in which the molecule consists of two [(η 5-C5H4)Re(CO)3] moieties linked by a single bridge, in which each of the two Re(CO)3 units is coordinated to the cyclopentadienyl ring in an η 5 mode. All three of these monobridged bis(cyclopentadienyl)rhenium carbonyl complexes have good catalytic activities in Friedel–Crafts alkylation reactions.  相似文献   

19.
The synthesis, an improved refined crystal and molecular structure re-determination, and the thermal decomposition behavior of two Zn(II) derivatives of isocinchomeronic acid (2,5-pyridinedicarboxylic acid or H22,5-pydc) are presented. [Zn(2,5-pydc)(H2O)3Zn(2,5-pydc)(H2O)2]2 (1) crystallizes in the triclinic P-1 space group with a = 7.106(2), b = 11.450(2), c = 11.869(1) Å, α = 107.29(1), β = 104.08(1), γ = 90.32(2)°, and Z = 2. [Zn(2,5-pydc)(H2O)2] · H2O (2) is orthorhombic (P212121 space group), with a = 7.342(1), b = 9.430(1), c = 13.834(2) Å, and Z = 4. The structures were refined to agreement R 1-factors of 0.0315 (1) and 0.0336 (2). Complex (1) is arranged as molecular Zn4(2,5-pydc)4(H2O)10 tetramers, the cages of which define channels that remain unblocked by anions. Compound (2) is polymeric with Zn(2,5-pydc)(H2O)2 and Zn(2,5-pydc)(H2O)3 units linked through bridging ligands. Both compounds were synthesized under mild conditions in aqueous media, without need to resort to hydrothermal media. Changing the pH from 4.51 to 5.75 suffices to direct the chemical processes toward the orthorhombic compound rather than to the triclinic one.  相似文献   

20.
A crystal-chemical study of dimethylgold(III) complexes with 8-hydroxyquinoline (CH3)2Au(OR) and 8-mercaptoquinoline (CH3)2Au(SR) (R = C9H6N) was performed. Crystal data for (CH3)2Au(OR): a = 8.7133(17) Å, b = 27.875(6) Å, c = 8.6688(17) Å, β = 102.76(3)°, Z = 8, ρ(calc) = 2.401 g/cm3, space group P21/c, R = 0.0909; for (CH3)2Au(SR): a = 3.5401(7) Å, b = 15.689(3) Å, c = 19.910(4) Å, β = 99.81(3)°, Z = 4, ρ(calc) = 2.361 g/cm3, space group P21/c, R = 0.0712. Both structures are molecular and involve neutral (CH3)2Au(L) molecules, L = C9H6NO or C9H6NS. In the structures, the molecules are arranged in stacks joined by van der Waals interactions. The average Au…Au intrastack distances are 3.57 Å and 4.34 Å for (CH3)2Au(OR) and 3.5 Å for (CH3)2Au(SR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号