首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Slovak Institute of Metrology and the Institute for Reference Materials and Measurements have collaborated in the certification of the two chlorine reference materials IRMM-641 and IRMM-642. Until now no isotopically enriched chlorine isotopic reference material certified for isotopic composition and content has been available commercially. The isotopic reference materials IRMM-641 and IRMM-642 described herein are certified for isotopic composition and for chlorine content. The chlorine content of the reference material IRMM-641 was certified by use of high-precision argentometric coulometric titration at the Slovak Institute of Metrology. The base material used for IRMM-641 is NIST Standard Reference Material 975. The chlorine content of the reference material IRMM-642 was measured by isotope dilution, using negative thermal ionization mass spectrometry at the Institute for Reference Materials and Measurements. Both standard reference materials were prepared by dissolving NaCl in water. The reference material IRMM-641 contains 0.025022 +/- 0.00011 mol kg(-1) chlorine of natural isotopic composition with an n(37Cl)/n(35Cl) ratio of 0.31977 +/- 0.00082. The reference material IRMM-642 contains 0.004458 +/- 0.000028 mol kg(-1) chlorine with an n(37Cl)/n(35Cl) ratio of 0.01914 +/- 0.00088.  相似文献   

3.
4.
A long known way of anchoring isotope ratio values to the SI system is by means of gravimetrically prepared isotopic mixtures. Thermal ionization mass spectrometry (TIMS) is the traditionally associated measurement technique, but multi-collector double focusing inductively coupled plasma (MC-ICP)-MS now appears to be an attractive alternative. This absolute calibration strategy necessitates that mass discrimination effects remain invariant in time and across the range of isotope ratios measured. It is not the case with MC-ICPMS and the present work illustrates, in the case of Zn isotopic measurements carried out using locally produced synthetic Zn isotope mixtures (IRMM-007 series), how this calibration strategy must be adjusted. First, variation in mass discrimination effects across the measurement sequence is propagated as an uncertainty component. Second, linear proportionality during each individual measurement between normalized mass discrimination and the average mass of the isotope ratios is used to evaluate mass discrimination for the ratios involving low abundance isotopes. Third, linear proportionality between mass discrimination and the logarithm of the isotope ratio values for n(67Zn)/n(64Zn) and n(68Zn)/n(64Zn) in the mixtures is used iteratively to evaluate mass discrimination for the same ratios in the isotopically enriched materials. Fourth, ratios in natural-like materials (including IRMM-3702 and IRMM-651) are calibrated by external bracketing using the isotopic mixtures. The relative expanded uncertainty (k = 2) estimated for n(68Zn)/n(64Zn) and n(67Zn)/n(64Zn) ratio values in the synthetic isotopic mixtures and the natural-like zinc samples was in the range of 0.034 to 0.048%. The uncertainty on the weighing (0.01%, k = 1) was the largest contributor to these budgets. The agreement between these results and those obtained with a single detector TIMS and with another MC-ICPMS further validated this work. The absolute isotope ratio values found for IRMM-3702-material also proposed as "delta 0" for delta-scale isotopic measurements-are n(66Zn)/n(64Zn) = 0.56397 (30), n(67Zn)/n(64Zn) = 0.082166 (35), n(68Zn)/n(64Zn) = 0.37519 (16), and n(70Zn)/n(64Zn) = 0.012418 (23). The derived Zn atomic weight value Ar(Zn) = 65.37777 (22) differs significantly from the current IUPAC value by Chang et al. [1]. Remeasurement, with isotopic mixtures from the IRMM-007 series, of the Zn isotope ratios in the same Chang et al. [1] material have revealed large systematic differences (1.35 (27)% per atomic mass unit) that suggest unrecognized measurement biases in their results.  相似文献   

5.
Jakopič  R.  Aregbe  Y.  Richter  S.  Zuleger  E.  Mialle  S.  Balsley  S. D.  Repinc  U.  Hiess  J. 《Journal of Radioanalytical and Nuclear Chemistry》2017,311(3):1781-1791

In the frame of the accountancy measurements of the fissile materials, reliable determinations of the plutonium and uranium content in spent nuclear fuel are required to comply with international safeguards agreements. Large-sized dried (LSD) spikes of enriched 235U and 239Pu for isotope dilution mass spectrometry (IDMS) analysis are routinely applied in reprocessing plants for this purpose. A correct characterisation of these elements is a pre-requirement for achieving high accuracy in IDMS analyses. This paper will present the results of external verification measurements of such LSD spikes performed by the European Commission and the International Atomic Energy Agency.

  相似文献   

6.
The recent proposal of thematic strategy for soil protection by the European Commission outlines that knowledge of problems associated with soil has increased considerably based on surveys, monitoring systems and data networks. Although this information is very useful, its value for the policy-making process is limited due to a lack of comparability. From this unsatisfying situation the need arises to develop an EU-wide monitoring system accompanied by suitable matrix reference materials. Experiences gained from the development and certification of IRMM-443 (The EUROSOILS) show how to approach the complex problem of providing suitable (i.e. representative) soil CRMs for the arising analytical needs to support existing and upcoming EU legislation.This paper presents briefly the quantitative findings of a certification exercise (adsorption coefficients for atrazine, lindane and 2,4-D, as well as pH in suspension). A comparison of these results with those of an intercomparison exercise organised in 1989 by the German UBA on very similar soils shows the significant improvement in the determination of soil adsorption coefficients that was induced by the EUROSOIL project. Indicative values of total and organic carbon content and nitrogen according to ISO Standards are also presented.Furthermore, the idea of reference soils and derived reference materials (for analytical purposes) as well as reference matrices (substrates for ecotoxicological testing) is highlighted and set into the context of horizontal standardisation of methods.  相似文献   

7.

Following the expression of the need for an americium (Am) standard and particularly for one with a certified americium-243 (243Am) content, the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA)/Direction de l’Energie Nucléaire of Marcoule and the European Commission Joint Research Center in Geel carried out a collaborative project for the production of a certified reference material enriched in 243Am. CEA’s Commission d’ETAblissement des Méthodes d’Analyse organized an interlaboratory comparison on this material prior to the issuing of its certificate. The usefulness of an interlaboratory comparison to assess the measurement capabilities in the field and to confirm the provisional certified values for the amount contents of 243Am, 241Am, total Am, the isotopic composition and the molar mass of Am has been demonstrated. Furthermore this interlaboratory comparison enabled to derive an indicative value for the n(242mAm)/n(243Am) isotope amount ratio.

  相似文献   

8.
The new so-called Quad-IRM (“Quadruple Isotope Reference Material”) was prepared from highly enriched 233U, 235U, 236U and 238U isotopic materials using an optimized combination of gravimetrical mixing and mass spectrometry. Within the mixing process the isotope ratios were adjusted to about n(233U)/n(235U)/n(236U)/n(238U) = 1/1/1/1 and certified with expanded relative uncertainties of 0.0054% per mass unit (coverage factor k = 2). This new isotope reference material is ideal for verifying the inter-calibration of multi-detector systems in isotope mass spectrometry.The certified n(233U)/n(236U) ratio of IRMM-3100a was derived from the mass metrology data of the gravimetrical mixing of highly enriched 233U and 236U materials. It was verified by thermal ionization mass spectrometry (TIMS) measurements using the classical total evaporation (TE) and modified total evaporation (MTE) methods. The n(234U)/n(236U), n(235U)/n(236U) and n(238U)/n(236U) ratios were then determined by TIMS using the n(233U)/n(236U) ratio for internal normalization and using a multi-dynamic measurement procedure in order to circumvent any possible influence and uncertainties from Faraday cup efficiencies and amplifier gain factors. The certified n(235U)/n(236U) and n(238U)/n(236U) ratios were additionally verified using the classical and modified total evaporation methods using two TIMS instruments at IRMM and one TIMS instrument at IAEA-SGAS. The verification data can be regarded as results obtained at three independent instruments at two different nuclear safeguards laboratories.  相似文献   

9.
10.
11.
12.
13.
14.
Large macrocyclic peptides can achieve surprisingly high membrane permeability, although the properties that govern permeability in this chemical space are only beginning to come into focus. We generated two libraries of cyclic decapeptides with stable cross-β conformations, and found that peptoid substitutions within the β-turns of the macrocycle preserved the rigidity of the parent scaffold, whereas peptoid substitutions in the opposing β-strands led to “chameleonic” species that were rigid in nonpolar media but highly flexible in water. Both rigid and chameleonic compounds showed high permeability over a wide lipophilicity range, with peak permeabilities differing significantly depending on scaffold rigidity. Our findings indicate that modulating lipophilicity can be used to engineer favorable ADME properties into both rigid and flexible macrocyclic peptides, and that scaffold rigidity can be used to tune optimal lipophilicity.  相似文献   

15.
Organic molecules can absorb or emit light in UV, visible and infra-red (IR) region of solar radiation. Fifty percent of energy of solar radiation lies in the IR region of solar spectrum and extended π-conjugated molecules containing low optical band gap can absorb NIR radiations. Recently IR molecules have grabbed the attention of synthetic chemists. Although only few molecules have been reported so far such as derivative of BODIPY, naphthalimide, porphyrins, perylene, BBT etc., they have shown highest absorbing capacity towards greater than 1100 nm. These compounds have potential applications in different fields, such as for biomedical and optoelectronic applications. In this review, we present different classes of light-harvesters with harvesting range above 1000 nm.  相似文献   

16.
17.
An extensive experimental study of ethane oxidation and pyrolysis has been conducted in the high pressure shock tube at UIC covering reflected shock pressures from 5–1000 bar, reaction temperatures up to 1550 K and stoichiometric (Φ = 1), fuel rich (Φ = 5), and pyrolytic mixtures. The experimental data has been used to develop a single model that can simulate the whole dataset very well and is the first ethane model capable of simulating experimental results over such an extensive range of pressure, temperature, and stoichiometry. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 306–331, 2005  相似文献   

18.
19.
20.
A novel technique involving solid state coulometric titration using stabilized zirconia electrolytes is presented. The method is termed differential scanning coulometric titrometry (DSCT). It is useful for the phase equilibrium studies of multicomponent oxide systems. In the DSCT, two independent and isostructural galvanic cells are used. One is a sample cell in which a sample is charged, while the other is a reference cell without a sample. Under the condition that oxygen activities in both cells are equal to each other, coulometric titration is carried out continuously in both cells. The difference between the titration currents provided to both cells corresponds to the amount of oxygen which is allowed to react with a sample per unit time. If the difference is recorded with respect to the oxygen activity, it starts to deviate from a base line when the sample starts to be oxidized or reduced. This method was successfully applied to the system CoNiO at 1000°C. The phase diagram of the system and related thermodynamic data were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号