首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental parameters of cathodic stripping chronopotentiometry of chloride at a silver-film electrode are investigated and optimized. The chloride preconcentration is achieved in the form of silver chloride by a controlled potential oxidation of the working electrode under vigorous stirring. Cathodic stripping of the deposit is obtained by the constant current, under the condition of diffusive mass transfer. Deaeration of the solution is not necessary. A detection limit of 35 μ dm−3 (10−6 mol dm−3) is obtained at a deposition time of 180 s, with a reproducibility of 6.7 % (expressed as relative standard deviation, RSD).  相似文献   

2.
A rapid electrochemical stripping chronopotentiometric procedure to determined sulfide in unaltered hydrothermal seawater samples is presented. Sulfide is deposited at −0.25 V (vs Ag/AgCl, KCl 3 M) at a vibrating gold microwire and then stripped through the application of a reductive constant current (typically −2 μA). The hydrodynamic conditions are modulated by vibration allowing a short deposition step, which is shown here to be necessary to minimize H2S volatilization. The limit of detection (LOD) is 30 nM after a deposition step of 7 s. This LOD is in the same range as the most sensitive cathodic voltammetric technique using a mercury drop electrode and is well below those reported previously for other electrodes capable of being implemented in situ.  相似文献   

3.
Sulphides in water samples were determined by stripping chronopotentiometry in a computer controlled flow system with a flow-through electrochemical cell. The working electrode was a porous glassy carbon electrode coated with Nafion and mercury. The sample was diluted with 0.1 mol L−1 NaOH and analysed. Sulphides in the sample were collected in the porous electrode as mercury sulphide and then stripped by a current of −500 μA. The limit of detection was found to be 1.6 μg L−1 and 0.5 μg L−1 for 1 mL and 5 mL of preconcentrated sample, respectively. The linear range for 1 mL sample was found to be 5-400 μg L−1. The repeatability and reproducibility was found to be 2.6% and 4.8%, respectively. The method was applied to analyses of waste water samples from a tannery.  相似文献   

4.
This work describes an efficient, fast, and reliable analytical methodology for mercury determination in urine samples using stripping chronopotentiometry at gold film electrodes. The samples were sonicated in the presence of concentrated HC1 and H2O2 for 15 min in order to disrupt the organic ligands and release the mercury. Thirty samples can be treated over the optimized region of the ultrasonic bath. This sample preparation was enough to allow the accurate stripping chronopotentiometric determination of mercury in the treated samples. No background currents and no passivation of the gold film electrode due to the sample matrix were verified. The samples were also analyzed by cold vapour atomic absorption spectrometry (CV-AAS) and good agreement between the results was verified. The analysis of NIST SRM 2670 (Toxic Metals in Freeze-Dried Urine) also validated the proposed electroanalytical method. Finally, this method was applied for mercury evaluation in urine of workers exposed to hospital waste incinerators.  相似文献   

5.
The objective of this study was to exploit the advantages of stripping chronopotentiometry (SCP) and stripping chronopotentiometry at scanned deposition potential (SSCP) for trace metal speciation analyses by using thin-film mercury screen-printed electrodes (TMF-SPE). At first, the SCP parameters were optimised for TMF-SPE, in order to reach the complete depletion regime. It has been shown that a stripping current higher than or equal to 10 μA allows this regime to be attained without removing oxygen from the solution.Then, these analytical conditions were used for the construction of SSCP curves for Cd-PDCA and Cd-NTA. When the concentration of free ligand in solution was known, the knowledge of the model describing the SSCP curves in absence and presence of a complex and the use of an effective fitting tool enabled estimating the stability constant and the rate constants for complexation. Further studies with complexes of restricted mobility are however necessary to assess the usefulness of this procedure to also estimate the diffusion coefficient of the complexes. Besides, this study showed that this approach was valid even when ligands were not in excess at the electrode during stripping.  相似文献   

6.
Capabilities for heavy metal speciation of anodic stripping voltammetry (ASV) and constant-current stripping chronopotentiometry (SCP) in both mercury drop (HMDE) and mercury film rotating disk (MFE-RDE) electrodes are compared. For this purpose, the Cd(II)–glycine and Cd(II)–polymethacrylate (PMA) systems are used as models of simple labile and macromolecular labile complexes adsorbing onto the electrode, respectively. The results suggest that SCP could be a valuable alternative to the more widespread ASV in this kind of study. Concerning the electrode, the MFE-RDE is less user-friendly than the HMDE, but presents a better definition of both the hydrodynamic conditions during the deposition step and the stripping regime during the oxidation. An important interference in SCP is the dissolved oxygen, which can be minimised by combining relatively large oxidation currents and low stirring rates. Moreover, for Cd–PMA, double peaks have been observed in both ASV and SCP, which seems to be due to the lack of enough ligand excess to complex the metal ions released by the amalgam oxidation. Anyway, this problem can be minimised by optimising the rotation rate of the electrode and ensuring enough ligand excess.  相似文献   

7.
The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu2+) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration.  相似文献   

8.
The concentration of trace metals in vegetable oils is an important criterion for the assessment of oil qualities with regard to freshness, keeping properties, storage and their influence on human nutrition and health. In this work, an effective and simple method for the determination of copper and lead in palm oil by stripping chronopotentiometry (SCP) is proposed. The metal ions were concentrated as their amalgams on the glassy carbon surface of a working electrode that was coated with a thin mercury film. An ultrasonic bath was used for the extraction of copper and lead from eleven oil samples using a 1:1 (v/v) mixture of concentrated hydrochloric acid and hydrogen peroxide. Efficient extraction of copper and lead (∼ 100%) was attained after 60 min of ultrasonic pre-treatment. A good correlation between the amount of sample and the time necessary for complete liberation of the metals was observed. The accuracy of the method was evaluated by means of a reference sample of skim milk powder containing trace elements (BCR 151). Quantitative analysis was carried out by the method of standard additions. Good linearity was obtained in the range of the concentrations examined. Detection limits of 13 and 50 ng g− 1 were found for Cu and Pb, respectively, in the palm oil samples. The average values found for the palm oil samples analyzed were in the range of < 0.013-2.67 µg g− 1 for copper and < 0.050-1.82 µg g− 1 for lead. The palm oil samples were also analyzed by graphite furnace atomic absorption spectrometry (GFAAS), demonstrating a very good correlation between the results.  相似文献   

9.
In situ mercury film electrode produced in the presence of thiocyanate has been shown extremely useful for highly sensitive adsorptive stripping voltammetric measurements of atrazine down to sub-μg L−1 level. Operational parameters have been optimized and the stripping voltammetric performance has been investigated using square wave scans. The adsorptive stripping response is linear over the range of 0.5-60 μg L−1 atrazine, with a detection limit of 0.024 μg L−1. The method has been applied to the determination of atrazine in soil and water samples.  相似文献   

10.
We developed a stripping chronopotentiometric method (constant current stripping analysis, CCSA) with a mercury film electrode for selenium quantification in seawater. A sensitivity and detection limit of 222 ms ng–1 l and 4 ng l–1 (50 pM), respectively, were accomplished for a 3-min electrolysis time. Compared to the other chronopotentiometric methods available for a single selenium measurement only in natural waters, our procedure exhibits a ten times better sensitivity. It, therefore, allows one to reach the current concentration thresholds found in coastal and oceanic waters (30–200 ng l–1). Moreover, a simple change in operating conditions enables one to also quantify Se(IV), a toxic dissolved species. With respect to the other electrochemical methods of current use, our procedure is beneficial because of its ease-of-use: it needs neither degassing step, nor catalyser.  相似文献   

11.
An in situ plated lead film electrode has been applied for adsorptive stripping voltammetric determination of trace concentrations of molybdenum in the presence of Alizarin S. The procedure is based on the preconcentration of the molybdenum-Alizarin S complex at an in situ plated lead film electrode held at −0.6 V (versus Ag/AgCl), followed by a negatively sweeping square wave voltammetric scan. The peak current is proportional to the concentration of molybdenum over the range 2 × 10−9 to 5 × 10−8 mol L−1, with a 3σ detection limit of 9 × 10−10 mol L−1 with an accumulation time of 60 s. The measurements were carried out from underaerated solutions. The proposed procedure was validated in the course of Mo(VI) determination in water certified reference materials.  相似文献   

12.
The determination of zinc ion (1-60 ng ml−1) by anodic square-wave stripping voltammetry on an anion-exchange perfluorinated polymer Tosflex mercury film electrodes (TMFE) was evaluated. The detection limit was 0.1 ng ml−1 Zn(II). The effect of various organic compounds (gelatin, albumin, starch, camphor, humic acid, Triton X-100, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB)) is explored. The results indicate that due to the size-exclusion and ion-exchange properties of Tosflex film, the TMFE is considerably more resistant to organic interference than the bare mercury film electrode.  相似文献   

13.
The use of ethylenediamine in the voltammetric study of copper in natural sea water was evaluated for applicability with rotating thin mercury film electrodes. It was shown that this method increases the analytical sensitivity for copper at such electrodes by at least a factor of 4, and improves the detection of pH 8 labile copper.  相似文献   

14.
An electrochemical method based on stripping chronopotentiometry (SCP) with a gold film electrode has been developed for determining arsenic in seawater. The detection limits were 0.053 ppb (0.71 nM) and 0.022 ppb (0.29 nM) for total inorganic As (As(T)) and As(III) after deposition times of 60 and 150 s, respectively. Compared to other stripping chronopotentiometric methods that use a gold macroelectrode to perform measurements of arsenic in seawater, the procedure described here exhibits better sensitivity and a fourfold shorter deposition time. Among the SCP methods, our procedure had proven its ability to analyse arsenic(III) in seawater. It therefore allows the concentrations of the various arsenic inorganic species in seawater—i.e. As(T), As(III) and As(V)—to be analysed. The proposed method is reliable, inexpensive and compact. It was successfully applied to the study of arsenic speciation along the salinity gradient of the Penzé estuary (NW France).  相似文献   

15.
An adsorptive stripping chronopotentiometric (SCP) method has been developed for quantification of dissolved iron in estuarine and coastal waters. After UV-digestion of filtered samples the Fe(III) ions in non-deoxygenated samples were complexed with solochrom violet RS (SVRS). The complexes were then accumulated by adsorption on the surface of a mercury-film electrode. The stripping step was performed by applying a constant current of −17 μA. Sensitivity and detection limit were 15 ms nmol−1 L (270 ms μg−1 L) and 1.5 nmol L−1 (84 ng L−1), respectively, for 60-s electrolysis time. Compared with the only other chronopotentiometric method available for measurement of iron in natural waters, our procedure is fifty times more sensitive in a quarter of the electrolysis time. It therefore enables detection of the concentrations currently found in estuarine and coastal waters. The method was successfully used to study the behaviour and seasonal variations of dissolved iron in the Penzé estuary, NW France.  相似文献   

16.
The capabilities of three solid chelating reagents were compared for the preconcentration of lead and mercury in high salinity aqueous samples (sea waters). The tested materials were 7-(4-ethyl-1-methyloctyl)-8-hydroxiquinoline (Kelex 100) adsorbed on Bondapack C18 (Kelex-100/C18), 8-hydroxiquinoline immobilized on vinyl co-polymer Toyopearl gel (TSK) and the commercial polystyrene/DVB ion exchange resin with paired iminodiacetate groups (Chelex-100). The two metals preconcentration and final determination were carried out in a flow injection system, coupled on-line to an atomic absorption spectrometric detector. Analytes were preconcentrated in the minicolumn, packed with the materials under investigation, while elution was achieved by injection of 500 μl of an adequate mineral acid solution. The different packing materials and minicolumn designs have been evaluated in terms of sensitivity for simultaneous preconcentration of both metals in sea water. Regarding the solid support, the best results were obtained for the TSK solid phase. Concerning the minicolumn design, the behavior was different for lead and mercury. Lead was quantitatively eluted with 0.5 M HCl and best performance was achieved when packing the solid material in a minicolumn with relatively small volume (1 cm length and 2.5 mm i.d.). In the case of mercury, bigger minicolumn volumes (5.5 cm length and 5.0 mm i.d.) and mixtures, 2 M HCl+1 M HNO3, were required for its quantitative recovery and elution. The system has been evaluated for quantitative determination of the two metals under study in different Asturian coastal aqueous samples.  相似文献   

17.
An adsorptive stripping voltammetric procedure for the determination of U(VI) at an in situ plated lead film electrode is described. The U(VI) complex with cupferron was accumulated from an acetate buffer solution of pH 4.2 at the potential −0.65 V. The measurements were carried out from undeaerated solutions. The calibration graph for an accumulation time of 180 s was linear from 5 × 10−10 to 2 × 10−8 mol L−1. The detection limit was 2 × 10−10 mol L−1, the relative standard deviation for 2 × 10−8 mol L−1 U(VI) was 4.3%. The proposed procedure was validated in the course of U(VI) determination in water certified reference materials.  相似文献   

18.
The potential application of commercial screen-printed gold electrodes (SPGEs) for the trace determination of lead, copper, and mercury in fuel bioethanol is demonstrated. Samples were simply diluted in 0.067 mol L−1 HCl solution prior to square-wave anodic stripping voltammetry (SWASV) measurements recorded with a portable potentiostat. The proposed method presented a low detection limit (<2 μg L−1) for a 240 s deposition time, linear range between 5 and 300 μg L−1, and adequate recovery values (96–104%) for spiked samples. This analytical method shows great promise for on-site trace metal determination in fuel bioethanol once there is no requirement for sample treatment or electrode modification.  相似文献   

19.
Development of sensing systems for trace metals is highly important because the abnormal concentration of some metals or the presence of some traces of toxic metals is very dangerous. The stripping analysis is an efficient way to detect metals even at low concentrations. Much work has been carried out to develop highly sensitive, stable, reproducible, and cheap electrochemical sensors for metal ions. This review summarizes the recent progress is stripping analysis of trace metals, focusing on works published from 2015 to 2019.  相似文献   

20.
For elimination of copper interference in anodic stripping determinations of zinc at mercury and bismuth film electrodes gallium ions are usually added to the supporting electrolyte. In the presented studies novel ex situ formed gallium film electrode was applied for this purpose. The proposed electrode is less toxic than mercury one while the detection limit for zinc was lower than for bismuth film electrode following the same deposition time. The calibration graph for deposition time of 60 s was linear from 5 × 10−8 to 2 × 10−6 mol L−1. The determinations of zinc were carried out from undeaerated solutions. The proposed procedure was applied to zinc determination in certified reference material and tap water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号