首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples of various compositions were obtained in the homogeneity range of the Yb-In-Cu system (YbIn1?xCu4+x), from stoichiometric (YbInCu4) to YbIn0.905Cu4.095. Their lattice constant (at 300 K and in the range 20–100 K), total thermal conductivity, and electrical resistivity (from 4 to 300 K) were measured. All the compositions studied exhibited an isostructural phase transition at T v ?40–80 K driven by a change in the Yb ion valence state. It was shown that within the YbIn1?xCu4+x homogeneity range, the lattice thermal conductivity κph decreases with increasing x; at T>T v , κph grows with temperature and the Lorenz number (which enters the Wiedemann-Franz law for the electronic component of thermal conductivity) of the light heavy-fermion system, to which YbIn1?xCu4+x belongs for T<T v , behaves as it does in classical heavy-fermion systems. Thermal cycling performed through T v generates stresses in the YbIn1?xCu4+x lattice, which entails an increase in the electrical resistivity and a decrease in the thermal conductivity. “Soft anneal” (prolonged room-temperature aging of samples) makes the effect disappear. A conclusion is drawn as to the nature of the effects observed.  相似文献   

2.
This paper reports on the electrical resistivity and thermal conductivity of polycrystalline YbIn0.7Ag0.3Cu4 at temperatures from 4.2 to 300 K, which exhibits, at T v , a continuous isostructural first-order phase transition from a Curie-Weiss paramagnet with localized magnetic moments (for T>T v ) to a Pauli paramagnet in a nonmagnetic Fermi liquid state with the Yb ion in a mixed valence state (for T<T v ). It is shown that for T<T v , the Lorenz number behaves in accordance with the theoretical model developed for heavy-fermion materials, while for T>T v , it acquires the value typical of standard metals.  相似文献   

3.
The electrical and thermal conductivities of an YbInCu4 polycrystalline sample have been measured within the 4.2–300-K range. The behavior of the heat conductivity has been found to change sharply above and below T v =70–75 K, the temperature corresponding to an isostructural phase transition from a state with an integral valence (T>T v ) to a mixed-valence state (T<T v ) of Yb ions. A preliminary qualitative analysis of the results is presented. Fiz. Tverd. Tela (St. Petersburg) 41, 1548–1551 (September 1999)  相似文献   

4.
The [111] longitudinal sound velocity (v L) in a single-crystal synthetic opal has been measured at a frequency of 10 MHz in the temperature range 4.2–300 K. At 300 K, v L=2.1×105 cm/s. The quantity dv L/v 300 K(T) (where v T,K?v300 K) in the ranges 4.2–200 and 200–300 K behaves in the way typical of amorphous and crystalline solids, respectively.  相似文献   

5.
In the intermetallic compound YbInCu4 the Gd3+-ESR and the static susceptibility were measured in the temperature range 1.5K–300 K, i.e. both below and above the valence phase transition which occurs in this material at Tph≈50 K. The Gd3+ resonance is mainly determined by exchange interaction of Gd3+ ions with fluctuating Yb3+ ions via conduction electrons (RKKY coupling) both below and above this transition. Arguments are presented that at low temperature YbInCu4 is a dense Kondo system (mixed valent state).  相似文献   

6.
The thermal conductivity κ and electrical resistivity ρ of a cast polycrystalline sample of YbZnCu4, which belongs to the class of moderately heavy-fermion compounds, are measured and studied in the temperature range 5–300 K. It is shown that the phonon thermal conductivity of the sample follows an amorphous-like pattern throughout the temperature range under investigation, which should be assigned to the presence of Yb ions with a homogeneous mixed valence in this compound. The temperature dependence ρ(T) has two specific portions: a high-temperature portion (T > 220 K) characteristic of conventional metals and a moderate-temperature portion (14–35 K) typical of Kondo compounds.  相似文献   

7.
The specific heat at a constant pressure (C p) and the velocity of sound (v) are measured for a moderate heavy-fermion compound YbZnCu4 in the temperature range 3.5–250 K and at 77 K, respectively. The experimental values of C p and v obtained in this study and the phonon thermal conductivity previously measured in the temperature range 5–300 K are used to calculate the phonon mean free path l for this compound. The temperature dependence of the phonon mean free path l thus determined is characteristic of classical amorphous materials.  相似文献   

8.
The temperature dependence of the electrical resistivity ρ(T) for ceramic samples of LaMnO3 + δ (δ = 0.100–0.154) are studied in the temperature range T = 15–350 K, in magnetic fields of 0–10 T, and under hydrostatic pressures P of up to 11 kbar. It is shown that, above the ferromagnet-paramagnet transition temperature of LaMnO3 + δ, the dependence ρ(T) of this compound obeys the Shklovskii-Efros variable-range hopping conduction: ρ(T) = ρ0(T)exp[(T 0/T)1/2], where ρ0(T) = AT 9/2 (A is a constant). The density of localized states g(?) near the Fermi level is found to have a Coulomb gap Δ and a rigid gap γ(T). The Coulomb gap Δ assumes values of 0.43, 0.46, and 0.48 eV, and the rigid gap satisfies the relationship γ(T) ≈ γ(T v)(T/T v)1/2, where T v is the temperature of the onset of variable-range hopping conduction and γ(T v) = 0.13, 0.16, and 0.17 eV for δ = 0.100, 0.125, and 0.154, respectively. The carrier localization lengths a = 1.7, 1.4, and 1.2 Å are determined for the same values of δ. The effect of hydrostatic pressure on the variable-range hopping conduction in LaMnO3 + δ with δ = 0.154 is analyzed, and the dependences Δ(P) and γv(P) are obtained.  相似文献   

9.
The electron spin resonance (ESR) of the heavy-fermion metal YbRh2Si2 has been studied. The angular variation and the temperature dependence of the ESR line width have been measured in YbRh2Si2 single crystals in the temperature range of 4–25 K. The characteristic spin-fluctuation temperatureT * ~ 17 K estimated from these studies coincides very well with other experimental data. A well-behaved ESR signal due to local Yb3+ moments strongly supports the localized moment scenario for heavy-fermion quantum critical points.  相似文献   

10.
This paper reports on a measurement of the heat capacity at constant pressure (C p ) in the temperature range 3–320 K and the sound velocity (v) at 77 K for the “light” heavy-fermion compound YbMgCu4. The present experimental data on C p and v of YbMgCu4, combined with our earlier phonon thermal conductivity data for YbMgCu4 in the range 5–300 K, have been used to calculate the phonon mean free path l in this compound. The temperature dependence of l obtained is found to be characteristic of classical amorphous materials.  相似文献   

11.
The thermal conductivity κ and electrical resistivity ρ of a cast polycrystalline sample of YbIn0.2Ag0.8Cu4, which belongs to the class of moderate heavy-fermion compounds, are measured in the temperature range 5–300 K. It is shown that the phonon thermal conductivity of the sample follows an amorphous-like pattern throughout the temperature range covered, which should be assigned to the presence of Yb ions with a homogeneous mixed valence in this compound. The temperature dependence ρ(T) is divided into three portions: a high-temperature portion characteristic of conventional metals, a medium-temperature portion typical of Kondo compounds, and a low-temperature portion corresponding to a coherent Kondo lattice (the heavy-fermion regime). The Kondo temperature is estimated.  相似文献   

12.
It has been shown that uncertainties in the interpretation of experimental data on transport phenomena in Sb2Te3 are resolved in the two-band model with the consistent inclusion of the interband hole scattering. The performed calculation is in quantitative agreement with the experimental data in the temperature range from 77 to 400 K for the following parameters of the band spectrum: the effective mass of the density of states of light holes m d1 ≈ 0.6m 0 (where m 0 is the free electron mass), the effective mass of the density of states of heavy holes m d2 ≈ 1.8m 0, and the energy gap between nonequivalent extrema of the valence band ΔE v(T) ≈ 0.15–2.5 × 10?4 T eV.  相似文献   

13.
The thermal conductivity κ (within the range 4–300 K) and electrical conductivity σ (from 80 to 300 K) of polycrystalline Sm3S4 with the lattice parameter a=8.505 Å (with a slight off-stoichiometry toward Sm2S3) are measured. For T>95 K, charge transfer is shown to occur, as in stoichiometric Sm3S4 samples, by the hopping mechanism (σ ~ exp(?ΔE/kT) with ΔE ~ 0.13 eV). At low temperatures [up to the maximum in the lattice thermal conductivity κph(T)], κphT 2.6; in the range 20–50 K, κphT ?1.2; and for T>95 K, where the hopping charge-transfer mechanism sets in, κphT ?0.3 and a noticeable residual thermal resistivity is observed. It is concluded that in compounds with inhomogeneous intermediate rare-earthion valence, to which Sm3S4 belongs, electron hopping from Sm2+ (ion with a larger radius) to Sm3+ (ion with a smaller radius) and back generates local stresses in the crystal lattice which bring about a change in the thermal conductivity scaling of κph from T ?1.2 to T ?0.3 and the formation of an appreciable residual thermal resistivity.  相似文献   

14.
We report on the formation of a novel ternary compound Ce2PdIn8 that is isostructural with the heavy-fermion superconductors Ce2CoIn8 and Ce2RhIn8. Its magnetic, electrical transport and thermodynamic properties were studied on polycrystalline samples in wide ranges of temperature and magnetic field strength. The results revealed Ce2PdIn8 to be a paramagnetic Kondo lattice with a coherence temperature of about 12 K. The C/T ratio of the specific heat reaches at 350 mK a strongly enhanced magnitude of about per Ce-atom, thus clearly indicating a heavy-fermion nature of this material. Moreover, a logarithmic divergence of C/T vs. T, observed below 3 K, which is accompanied by a linear temperature dependence of the electrical resistivity below 6 K, hint at a non-Fermi liquid character of the electronic ground state in the new compound reported.  相似文献   

15.
The thermopower coefficients S of samples of a moderate heavy-fermion compound YbZnCu4 and metallic LuZnCu4 are measured in the temperature range 5–300 K. Data on the temperature dependence of the thermopower coefficient S of YbZnCu4 suggest that this material is a heavy-fermion compound with a Kondo temperature of ~50 K.  相似文献   

16.
Multiple photon excitation of the v2 + v6 combination band of SF6 in a bulk at T ≈ 295 K and cooled in a pulsed free jet up to TV ≈ 160 K and TR ≈ 40 K by a pulsed TEA CO2 laser has been investigated. Obtained results are compared with the data on the v3 vibration excitation. At exciting energy fluences ø = 0.1?2.5 J cm-2 the levels in the region of the discrete vibrational states (v=3?5) are found mainly to be excited. Multiphoton absorption spectra at room temperature have a sharp resonant structure. The fraction of interacting molecules is considerably (3–7 times) less compared than that for the case of v3 vibration excitation. Multiphoton absorption of the v2 + v6 and v3 vibrations of SF6 is shown to be proportional to the dipole moments of the corresponding transitions.  相似文献   

17.
The recent line-center absorption coefficient measurements on the P(6) line of the CO fundamental have been shown to be consistent with Sv(T) = 273(273/T)cm-2atm-1 and γ0(T) = 0.0652(300/T)0.66 for the absolute intensity of the band and the nitrogen-broadened line width in the temperature range 300–800°K.  相似文献   

18.
The ternary germanide Ce3Ni2Ge7 has been studied by means of neutron powder diffraction and Ce LIII X-ray absorption (XAS). This compound which orders antiferromagnetically below TN=7.2(2) K, crystallizes in the orthorhombic (Cmmm space group) La3Co2Sn7-type structure where Ce atoms occupying two inequivalent crystallographic sites: Ce1 at 2d site and Ce2 at 4i site. Below TN, the antiferromagnetic structure of Ce3Ni2Ge7 is collinear but only the Ce2 atoms carry a magnetic moment (1.98(2) μB at 1.4 K). The absence of ordered magnetic moment on Ce1 atoms can be correlated to the average valence v=3.03(1), determined by X-ray absorption spectroscopy, suggesting an intermediate valence state of cerium in the 2d site.  相似文献   

19.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

20.
A vibro-rotational analysis has been performed of the second positive system (SPS) of N2 and of the first negative system (FNS) of N+2 emitted by 35 MHz discharges in flowing nitrogen operated at pressures of 5–50 torr and power densities of the order of 1–10 W-cm-3. The distributions of the vibrational and of the rotational levels follow Boltzmann's law in both the SPS and the FNS with Tv = 4000°K and TR = 2800°K for the N2(C3Πu) state and Tv = 5100°K and TR = 5800°K for the N+2(B2Σ+g) state and independent of pressure. Kinetic gas temperatures are between 1200 and 2000°K and increase with pressure; electron temperatures are in the range 15,000–9,500°K. The reversal of line intensities of the SPS and of the FNS observed with increasing pressure has been tentatively interpreted. Possible chemical implications of these results have been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号