首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the orbital and antiferromagnetic ordering behaviors of the half-doped bilayer manganite La(2-2x)Sr(1+2x)Mn2O7 (x ? 0.5) by using Mn L(2,3)-edge resonant soft x-ray scattering. Resonant soft x-ray scattering reveals the CE-type orbital order below T(oo) ? 220 K, which shows partial melting behavior below T(m) ? 165 K. We also found coexistence CE- and A-type antiferromagnetic orders. Both orders involve the CE-type orbital order with nearly the same orbital character and are coupled with each other. These results manifest that the ground state with the CE-type antiferromagnetic order is easily susceptible to destabilization into the A-type one even with a small fluctuation of the doping level, as suggested by the extremely narrow magnetic phase boundaries at x ? 0.5±0.005.  相似文献   

2.
We have conducted the first soft x-ray diffraction experiments from a bulk single crystal, studying the bilayer manganite La2-2xSr1+2xMn2O7 with x=0.475 in which we were able to access the (002) Bragg reflection using soft x rays. The Bragg reflection displays a strong resonant enhancement at the L(III) and L(II) manganese absorption edges. We demonstrate that the resonant enhancement of the magnetic diffraction of the (001) is extremely large, indeed so large that it exceeds that of the nonresonant Bragg diffraction. Resonant soft x-ray scattering of 3d transition metal oxides is the only technique for the atomic selective measurement of spin, charge, and orbital correlations in materials, such as high temperature superconductors, colossal magnetoresistance manganites, and charge stripe nickelates.  相似文献   

3.
Antiferroquadrupolar (AFQ) ordering has been conjectured in several rare-earth compounds to explain their anomalous magnetic properties. No direct evidence for AFQ ordering, however, has been reported. Using the resonant x-ray scattering technique near the Dy L(III) absorption edge, we have succeeded in observing the AFQ order parameter in DyB2C2 and analyzing the energy and polarization dependence. The much weaker coupling between the orbital degrees of freedom and the lattice in 4f electron systems than in 3d compounds makes them an ideal platform to study orbital interactions originating from electronic mechanisms.  相似文献   

4.
We have succeeded in detecting ferro-type orbital states in Ca2-xSrxRuO4, which is the first outcome in a 4d Mott transition system by the resonant x-ray scattering interference technique. For x=0 (Mott insulator), the resonant signal for d(xy) orbital ordering is observed even at room temperature, in which the Jahn-Teller distortion is negligible. The signal disappears near the metal-insulator transition. On the other hand, in a metallic phase for x=0.5, orbital polarization with d(yz/zx) character dominates. With lowering temperature, the magnitude of the resonant signal slightly decreases owing to the additional influence of the gamma band with d(xy) character.  相似文献   

5.
Resonant x-ray diffraction performed at the L(II) and L(III) absorption edges of Ru has been used to investigate the magnetic and orbital ordering in Ca2RuO4 single crystals. A large resonant enhancement due to electric dipole 2p-->4d transitions is observed at the wave-vector characteristic of antiferromagnetic ordering. Besides the previously known antiferromagnetic phase transition at T(N)=110 K, an additional phase transition, between two paramagnetic phases, is observed around 260 K. Based on the polarization and azimuthal angle dependence of the diffraction signal, this transition can be attributed to orbital ordering of the Ru t(2g) electrons. The propagation vector of the orbital order is inconsistent with some theoretical predictions for the orbital state of Ca2RuO4.  相似文献   

6.
The resonant multiple Bragg x-ray diffraction is used to study the forbidden (104) reflection in LaMnO3. Using the interference between the three-beam scattering and resonant scattering we can determine the phase of the resonant scattering. This phase is shown to be consistent with a model in which the resonant scattering is caused by the influence of the Mn-O bond length distortion rather than directly by the orbital ordering on the Mn 4p band structure.  相似文献   

7.
We present resonant soft x-ray scattering results from small bandwidth manganites (Pr,Ca)MnO(3), which show that the CE-type spin ordering (SO) at the phase boundary is stabilized only below the canted antiferromagnetic transition temperature and enhanced by ferromagnetism in the macroscopically insulating state (FM-I). Our results reveal the fragility of the CE-type ordering that underpins the colossal magnetoresistance effect in this system, as well as an unexpected cooperative interplay between FM-I and CE-type SO which is in contrast to the competitive interplay between the ferromagnetic metallic state and CE-type ordering.  相似文献   

8.
F Bondino  A Barla  T Schmitt  VN Strocov  JY Henry  JP Sanchez 《J Phys Condens Matter》2012,24(32):325402, 1-325402, 5
We measured the low energy excitation spectrum of α'-NaV (2)O(5) across its charge ordering and crystallographic phase transition with resonant inelastic x-ray scattering (RIXS) at the V L(3) edge. Exploiting the polarization dependence of the RIXS signal and the high resolution of the data, we reveal the excitation across the insulating gap at 1?eV and identify the excitations from occupied 3d(xy) bonding orbitals to unoccupied bonding 3d(xy) and 3d(yz)/3d(xz) orbitals. Furthermore we observe a progressive change of the electronic structure of α'-NaV (2)O(5) induced by soft x-ray irradiation, with the appearance of features characteristic of sodium deficient Na(x)V (2)O(5) (x?相似文献   

9.
10.
We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L3 edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.  相似文献   

11.
We have utilized resonant x-ray diffraction at the Mn L(II,III) edges in order to directly compare magnetic and orbital correlations in Pr0.6Ca0.4MnO3. Comparing the widths of the magnetic and orbital diffraction peaks, we find that the magnetic correlation length exceeds that of the orbital order by nearly a factor of 2. Furthermore, we observe a large (approximately 3 eV) spectral weight shift between the magnetic and orbital resonant line shapes, which cannot be explained within the classic Goodenough picture of a charge-ordered ground state. To explain the shift, we calculate the orbital and magnetic resonant diffraction line shapes based on a relaxed charge-ordered model.  相似文献   

12.
Orbital ordering (OO) in the layered perovskite La0.5Sr1.5MnO4 has been investigated using the enhanced sensitivity of soft x-ray resonant diffraction at the Mn L edges. The energy dependence of an OO diffraction peak over the L(2,3) edges is compared to ligand-field calculations allowing a distinction between the influences of Jahn-Teller distortions and spin correlations. The energy dependence of the diffraction peak at the Mn L1 edge is remarkably different from that observed at the Mn K edge.  相似文献   

13.
The thickness dependence of the helical antiferromagnetic ordering temperature T(N) was studied for thin Ho metal films by resonant magnetic soft x-ray and neutron diffraction. In contrast with the Curie temperature of ferromagnets, T(N) was found to decrease with film thickness d according to [T(N)(infinity)-T(N)(d)]/T(N)(d) proportional variant (d-d(0))(-lambda(')), where lambda(') is a phenomenological exponent and d(0) is of the order of the bulk magnetic period L(b). These observations are reproduced by mean-field calculations that suggest a linear relationship between d(0) and L(b) in long-period antiferromagnets.  相似文献   

14.
The dispersion of the elusive elementary excitations of orbital ordered systems, orbitons, has escaped detection so far. The recent advances in resonant inelastic x-ray scattering (RIXS) techniques have made it, in principle, a powerful new probe of orbiton dynamics. We compute the detailed traces that orbitons leave in RIXS for an e{g} orbital ordered system, using the ultrashort core-hole lifetime expansion for RIXS. We observe that both single- and double-orbiton excitations are allowed, where the former, at lower energy, have sharper features. The rich energy- and momentum-dependent intensity variations that we observe make clear that RIXS is an ideal method to identify and map out orbiton dispersions.  相似文献   

15.
We report the results of resonant x-ray scattering experiments performed at the Np M(4,5) edges in NpO2. Below T(0)=25 K, the development of long-range order of Np electric quadrupoles is revealed by the growth of superlattice Bragg peaks. The polarization and azimuthal dependence of the intensity of the resonant peaks are well reproduced assuming anisotropic tensor susceptibility scattering from a triple-q(-->) longitudinal antiferroquadrupolar structure. Electric-quadrupole order in NpO2 could be driven by the ordering at T0 of magnetic octupoles of Gamma(5) symmetry, splitting the Np ground state quartet and leading to a singlet ground state with zero dipole-magnetic moment.  相似文献   

16.
We have investigated the charge ordering (CO) in magnetite below the Verwey transition. A new set of half-integer and mixed-integer superlattice reflections of the low-temperature phase have been studied by x-ray resonant scattering. None of these reflections show features characteristic of CO. We demonstrate the absence of CO along the c axis with the periodicity of either the cubic lattice q=(001) or the doubled cubic lattice q=(001/2). This result suggests that the Verwey transition is caused by strong electron-phonon interaction instead of an electronic ordering on the octahedral Fe atoms.  相似文献   

17.
We have used resonant soft x-ray scattering to study the effects of discommensuration on the hole Wigner crystal (HC) in the spin ladder Sr(14-x)CaxCu24O41 (SCCO). As the hole density is varied the HC forms only with the commensurate wave vectors L(L) = 1/5 and L(L) = 1/3; for incommensurate values it "melts." A simple scaling between L(L) and temperature is observed, tau1/3/tau1/5 = 5/3, indicating an inverse relationship between the interaction strength and wavelength. Our results suggest that SCCO contains hole pairs that are crystallized through an interplay between lattice commensuration and Coulomb repulsion, reminiscent of the "pair density wave" scenario.  相似文献   

18.
We report measured dipolar asymmetry ratios at the LIII edges of the heavy rare-earth metals. The results are compared with a first-principles calculation and excellent agreement is found. A simple model of the scattering is developed, enabling us to reinterpret the resonant x-ray scattering in these materials and to identify the peaks in the asymmetry ratios with features in the spin and orbital moment densities.  相似文献   

19.
We report experimental evidence for the charge-orbital ordering in magnetite below the Verwey transition temperature T(V). Measurements of O K-edge resonant x-ray scattering on magnetite reveal that the O 2p states in the vicinity of the Fermi level exhibit a charge-orbital ordering along the c axis with a spatial periodicity of the doubled lattice parameter of the undistorted cubic phase. Such a charge-orbital ordering vanishes abruptly above T(V) and exhibits a thermal hysteresis, correlating closely with the Verwey transition in magnetite.  相似文献   

20.
Comprehensive x-ray scattering studies, including resonant scattering at Mn L, Tb L, and M edges, were performed on single crystals of TbMn2O5 for crystallographic data to elucidate the nature of its commensurate and incommensurate phases. The scattering results provide direct evidence of symmetry lowering to the ferroelectric phase driven by magnetically induced lattice modulations and show the presence of multiple magnetic orders. The competing orders under spin-frustrated geometry are believed to cause discommensuration and result in the commensurate-to-incommensurate phase transition around 24 K. It is proposed that the low temperature incommensurate phase consists of commensurate domains separated by antiphase domain walls which change both signs of spontaneous polarizations and x-ray scattering amplitudes for forbidden reflections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号