首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

New results on the phase diagram of KNbO 3 determined, from 10 to 650 K up to 30 GPa, with Raman scattering are given. On increasing pressure the Curie temperature T c was found to shift down regularly from 700 K, at atmospheric pressure, to 20 K at ~25 GPa. Up to 20 GPa, the pressure dependence of T c follows a classical regime described by the Ising model where the dipolar interaction follow a i 2 /v law, where i is the off-center displacement and v the unit cell volume. This behaviour found also for the ice VII-VIII is very likely encountered in a number of (anti)ferroelectric-paraelectric transformations involving positional disorder.  相似文献   

2.
We report a pressure-dependent investigation of KMnF(3) by x-ray diffraction up to 30 GPa. The results are discussed in the framework of Landau theory and in relation to the isostructural phase transition in SrTiO(3). The phase transition temperature near 186 K in KMnF(3) shifts to room temperature at a critical pressure of P(c) = 3.4 GPa; the pressure dependence of the transition point follows ΔP(c)/ΔT(c) = 0.0315 GPa K(-1). The transition becomes second order under high pressure, close to the tricritical point. The phase transition is determined by the rotation of MnF(6) octahedra with their simultaneous expansion along the rotation axis. The rotation angle was found to increase to 10.5° at 24 GPa. An additional anomaly was observed at higher pressure around 25 GPa, suggesting a further phase transition.  相似文献   

3.
High-pressure measurements of the resistivity of americium metal are reported to 27 GPa and down to temperatures of 0.4 K. The unusual dependence of the superconducting temperature (T(c)) on pressure is deduced. The critical field [H(c)(0) extrapolated to T=0] increases dramatically from 0.05 to approximately 1 T as the pressure is increased, suggesting that the type of superconductivity is changing as pressure increases. At pressures of approximately 16 GPa the 5f electrons of Am are changing from localized to itinerant, and the crystal structure also transforms to a complex one. The role of a Mott-type transition in the development of the peak in T(c) above 16 GPa is postulated.  相似文献   

4.
The highest superconducting temperature Tc observed in any elemental metal (Li with Tc approximately 18-20 K at pressure 35-48 GPa) is shown to arise from increasingly strong electron-phonon coupling concentrated along intersections of Kohn anomaly surfaces with the evolving Fermi surface. First-principles linear response calculations of the phonon spectrum and spectral function alpha2F(omega) reveal very strong Q- and phonon-polarization dependence of coupling strength, resulting in values of in the observed range. The sharp momentum dependence of the coupling even for the simple Li Fermi surface indicates more generally that a fine Q mesh is required for precise evaluation of lamda.  相似文献   

5.
 利用低温超高压装置,测量了Hg系样品HgBa2Ca2Cu3O8+y(Hg-1223)超导转变温度Tc在压力作用下的增强效应。压力最高达7.8 GPa,超导起始转变温度常压下为130 K,加压到5.4 GPa时获得最高温度为140 K。在5.4 GPa以下获得dTc/dp为1.85 K/GPa。用压力作用下氧原子位置的改变使载流子浓度提高和CuO2面间的耦合作用来解释高温超导的压力效应。  相似文献   

6.
A systematic ab initio search for low-enthalpy phases of disilane (Si2H6) at high pressures was performed based on the minima hopping method. We found a novel metallic phase of disilane with Cmcm symmetry, which is enthalpically more favorable than the recently proposed structures of disilane up to 280 GPa, but revealing compositional instability below 190 GPa. The Cmcm phase has a moderate electron-phonon coupling yielding a superconducting transition temperature T(c) of around 20 K at 100 GPa, decreasing to 13 K at 220 GPa. These values are significantly smaller than previously predicted T(c))s for disilane at equivalent pressure. This shows that similar but different crystalline structures of a material can result in dramatically different T(c)'s and stresses the need for a systematic search for a crystalline ground state.  相似文献   

7.
We report the first in situ boron K-edge inelastic x-ray scattering (IXS) spectra for alkali borate glasses (Li2B4O7) at high pressure up to 30 GPa where pressure-induced coordination transformation from three-coordinated to four-coordinated boron was directly probed. Coordination transformation (reversible upon decompression) begins around 5 GPa and the fraction of four-coordinated boron increases with pressure from about 50% (at 1 atm) to more than 95% (at 30 GPa) with multiple densification mechanisms, evidenced by three distinct pressure ranges for (d[4]B/dP)T. The lithium K-edge IXS spectrum for Li-borate glasses at 5 GPa shows IXS features similar to that at 1 atm, suggesting that the Li environment does not change much with pressure up to 5 GPa. These results provide improved understanding of the structure of low-z glass at high pressure.  相似文献   

8.
High-pressure effects on the superconducting transitions of beta-pyrochlore oxide superconductors AOs(2)O(6) (A = Cs,Rb,K) are studied by measuring resistivity under high pressures up to 10 GPa. The superconducting transition temperature T(c) first increases with increasing pressure in every compound and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa), and 10 K (0.6 GPa) for A = Cs, Rb, and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 GPa and 6 GPa for A = Rb and K and probably above 10 GPa for A = Cs. Characteristic changes in the coefficient A of the T(2) term in resistivity and residual resistivity are observed, both of which are synchronized with the corresponding change in T(c).  相似文献   

9.
We report on results of electrical resistivity and structural investigations on the cubic modification of FeGe under high pressure. The long-wavelength helical order (T(C) = 280 K) is suppressed at a critical pressure p(c) approximately 19 GPa. An anomaly at T(X)(p) and strong deviations from a Fermi-liquid behavior in a wide pressure range above p(c) suggest that the suppression of T(C) disagrees with the standard notion of a quantum critical phase transition. The metallic ground state persisting at high pressure can be described by band-structure calculations if zero-point motion is included. The shortest FeGe interatomic distance display discontinuous changes in the pressure dependence close to the T(C)(p) phase line.  相似文献   

10.

UPtAl exhibits a ferromagnetic ordering of U magnetic moments at temperatures below T C =42.5 K. The magnetic-ordering transition is accompanied by an anomaly in the temperature dependence of electrical resistivity. This allows us to determine the value of Curie temperature from 𝜌 vs. T data that can be measured at very high pressures, at which reliable magnetization measurements are difficult. We report on resistivity measurements performed on an UPtAl single crystal under hydrostatic pressures p h 8 GPa. It was observed that the initial increase of T C with p becomes gradually reduced for p >2 GPa until the maximum T C value of , 48 K is reached between 4 and 6 GPa that is followed by a progressively developing downturn of the T C ( p ) curve. The latter result is attributed to the approaching collapse of the U 5 f -moment ferromagnetism. Low-temperature resistivity data point to a rapidly reduced magnetic anisotropy at highest pressures.  相似文献   

11.
The pressure dependence of the critical temperature T(c) and upper critical field H(c2)(T) has been measured up to 19 GPa in the layered superconducting material 2H-NbSe2. T(c)(P) has a maximum at 10.5 GPa, well above the pressure for the suppression of the charge density wave (CDW) order. Using an effective two-band model to fit H(c2)(T), we obtain the pressure dependence of the anisotropy in the electron-phonon coupling and Fermi velocities, which reveals the peculiar interplay between CDW order, Fermi surface complexity, and superconductivity in this system.  相似文献   

12.
 运用金刚石对顶砧(Diamond Anvil Cell,DAC)技术,以液氩作为传压介质,在最高压力为67 GPa的压力范围内对NiO进行了原位的同步辐射X射线衍射研究。在整个实验过程中,并未发现第一类结构相变,也没有发现T.Sasaki等预测的在60 GPa左右轴比c/a随压力的变化率而突然增大的现象,且此压力范围内NiO的结构畸变程度随压力的变化趋势相比以前的研究结果要平缓一些。用三阶的Brich-Murnaghan方程对实验数据进行拟合,得到的体弹模量及其对压力的一阶导数分别为B0=195(4) GPa和B0′=5.3(2)。  相似文献   

13.
We report systematic measurements of ac susceptibility, nuclear-quadrupole-resonance spectrum, and nuclear-spin-lattice-relaxation time (T1) on the pressure (P)-induced heavy-fermion superconductor CeRhIn5. The temperature (T) dependence of 1/T(1) at P=1.6 GPa has revealed that antiferromagnetism (AFM) and superconductivity (SC) coexist microscopically, exhibiting the respective transition at T(N)=2.8 K and T(MF)(c)=0.9 K. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below T(onset)(c)=2 K, but T(MF)(c)=0.9 K, followed by a T(1)T=const law. These results point to the unconventional characteristics of SC coexisting with AFM. We highlight that both of the results deserve theoretical work on the gapless nature in the low-lying excitation spectrum due to the coexistence of AFM and SC and the lack of the mean-field regime below T(onset)(c)=2 K.  相似文献   

14.
We report on a pressure- (P-)induced evolution of superconductivity and spin correlations in CeIrIn(5) via the (115)In nuclear-spin-lattice-relaxation rate measurements. We find that applying pressure suppresses dramatically the antiferromagnetic fluctuations that are strong at ambient pressure. At P = 2.1 GPa, T(c) increases to T(c) = 0.8 K, which is twice T(c) (P = 0 GPa), in the background of Fermi-liquid state. This is in sharp contrast to the previous case in which a negative, chemical pressure (replacing Ir with Rh) enhances magnetic interaction and increases T(c). Our results suggest that multiple mechanisms work to produce superconductivity in the same compound CeIrIn(5).  相似文献   

15.
Methods have been developed to facilitate the data analysis of multiple two-dimensional powder diffraction images. These include, among others, automatic detection and calibration of Debye-Scherrer ellipses using pattern recognition techniques, and signal filtering employing established statistical procedures like fractile statistics.All algorithms are implemented in the freely available program package Powder3D developed for the evaluation and graphical presentation of large powder diffraction data sets.As a case study, we report the pressure dependence of the crystal structure of iron antimony oxide FeSb(2)O(4) (p≤21?GPa, T = 298?K) using high-resolution angle dispersive x-ray powder diffraction. FeSb(2)O(4) shows two phase transitions in the measured pressure range. The crystal structures of all modifications consist of frameworks of Fe(2+)O(6) octahedra and irregular Sb(3+)O(4) polyhedra. At ambient conditions, FeSb(2)O(4) crystallizes in space group P4(2)/mbc (phase I). Between p = 3.2?GPa and 4.1?GPa it exhibits a displacive second order phase transition to a structure of space group P 2(1)/c (phase II, a = 5.7792(4)??, b = 8.3134(9)??, c = 8.4545(11)??, β = 91.879(10)°, at p = 4.2?GPa). A second phase transition occurs between p = 6.4?GPa and 7.4?GPa to a structure of space group P4(2)/m (phase III, a = 7.8498(4)??, c = 5.7452(5)??, at p = 10.5?GPa). A nonlinear compression behaviour over the entire pressure range is observed, which can be described by three Vinet equations in the ranges from p = 0.52?GPa to p = 3.12?GPa, p = 4.2?GPa to p = 6.3?GPa and from p = 7.5?GPa to p = 19.8?GPa. The extrapolated bulk moduli of the high-pressure phases were determined to K(0) = 49(2)?GPa for phase I, K(0) = 27(3)?GPa for phase II and K(0) = 45(2)?GPa for phase III. The crystal structures of all phases are refined against x-ray powder data measured at several pressures between p = 0.52?GPa, and 10.5?GPa.  相似文献   

16.
We performed resistivity measurements in CuRh2S4 under quasihydrostatic pressure of up to 8.0 GPa, and found a pressure-induced superconductor-insulator transition. Initially, with increasing pressure, the superconducting transition temperature T(c) increases from 4.7 K at ambient pressure to 6.4 K at 4.0 GPa, but decreases at higher pressures. With further compression, superconductivity in CuRh2S4 disappears abruptly at a critical pressure P(SI) between 5.0 and 5.6 GPa, when it becomes an insulator.  相似文献   

17.
The superconducting transition temperature T c of the ZrD0.48 alloy is measured in the pressure range up to 41.5 GPa. The measurements are carried out in a high-pressure chamber with diamond anvils by the inductometric method. It is found that T c(P) increases to 3.1 K at a pressure below 30 GPa, exhibits a sharp increase up to 8 K near 30 GPa, and then smoothly decreases to ~6.5 K at 41.5 GPa. A similar dependence T c(P) is obtained for pure Zr. The similarity of the T c(P) curves suggests that the dependence T c(P) observed for ZrD0.48 is due to the presence of ω-phase in this alloy at pressures P<30 GPa and the ω-β transition at P≈30 GPa, which leads to the establishment of new ratios between the phases in the Zr-D system. In the pressure range studied, no indications are observed for new superconducting phases similar to the phases of intermediate composition in the Ti-H(D) system, which are formed by the hydrogen transfer from tetrahedral to octahedral interstitials.  相似文献   

18.

Among heavy-fermion (HF) superconductors, CeCoIn 5 exhibits a record high value of T c =2.3 K at ambient pressure [1]. CeCoIn 5 belongs to a new class of HF-superconductors that crystallize in the tetragonal HoCoGa 5 -structure. This structure can be regarded as alternating layers of CeIn 3 and CoIn 2 . Bulk CeIn 3 undergoes a transition from an antiferromagnetic (AFM) state at ambient pressure ( T N =10.2 K) to a superconducting state with very low T C =0.15 K at a critical pressure p c =2.8 GPa [2] at which long range magnetic order vanishes. It is, therefore, regarded as a possible candidate for magnetically mediated superconductivity (SC). We report on measurements of the heat capacity of CeCoIn 5 at hydrostatic pressures p h 1.5 GPa. While T c increases with increasing pressure, the effective mass of the quasi-particles m eff decreases, as indicated by the ratio C / T | T c . As a working hypothesis based on theories of a nearly antiferromagnetic Fermi-liquid (NAFFL), this may be interpreted as the stabilization of the superconducting state by an increase of the characteristic spin fluctuation temperature T_{SF} (T_{SF}\propto k_F^2/m_{\rm eff}).  相似文献   

19.
When FeI2 is subjected to pressures of up to 20 GPa, a change of approximately 20% occurs in the unit cell volume.57Fe Mössbauer spectroscopy (MS) in a diamondanvil cell has been used to monitor the pressure evolution of the hyperfine interaction parameters of this layered antiferromagnetic insulator. The pressure dependence of the quadrupole splittingQS at 296 K exhibits a maximum at 12 GPa and the saturation magnetic hyperfine fieldH 0 increases from 7.4 T at ambient pressure to 12 T at 18 GPa. A qualitative analysis identifies the pressure evolution ofQS with changes in the trigonal component of the crystal field splitting. The pressure variation ofH 0 is attributed to an increase in the average value of the 3d charge density distribution.  相似文献   

20.
Chuchu Zhu 《中国物理 B》2022,31(7):76201-076201
Topological materials have aroused great interest in recent years, especially when magnetism is involved. Pressure can effectively tune the topological states and possibly induce superconductivity. Here we report the high-pressure study of topological semimetals $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu} $ and Yb), which have the same crystal structure. In antiferromagnetic (AFM) Weyl semimetal EuCd$_{2}$Sb$_{2}$, the Néel temperature (${T}_{\rm N}$) increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa. When pressure is above 14.9 GPa, the AFM peak of resistance disappears, indicating a non-magnetic state. In paramagnetic Dirac semimetal candidate YbCd$_{2}$Sb$_{2}$, pressure-induced superconductivity appears at 1.94 GPa, then ${ T}_{\rm c}$ reaches to a maximum of 1.67 K at 5.22 GPa and drops to zero at about 30 GPa, displaying a dome-shaped temperature-pressure phase diagram. High-pressure x-ray diffraction measurement demonstrates that a crystalline-to-amorphous phase transition occurs at about 16 GPa in YbCd$_{2}$Sb$_{2}$, revealing the robustness of pressure-induced superconductivity against structural instability. Similar structural phase transition may also occur in EuCd$_{2}$Sb$_{2}$, causing the disappearance of magnetism. Our results show that $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu}$ and Yb) is a novel platform for exploring the interplay among magnetism, topology, and superconductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号