首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report on Kerr nonlinearity and dispersive optical bistability of a Fabry-Perot optical resonator due to the displacement of ultracold atoms trapped within. In the driven resonator, such collective motion is induced by optical forces acting upon up to 10(5) 87Rb atoms prepared in the lowest band of a one-dimensional intracavity optical lattice. The longevity of atomic motional coherence allows for strongly nonlinear optics at extremely low cavity photon numbers, as demonstrated by the observation of both branches of optical bistability at photon numbers below unity.  相似文献   

2.
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.  相似文献   

3.
We study quantum feedback cooling of atomic motion in an optical cavity. We design a feedback algorithm that can cool the atom to the ground state of the optical potential with high efficiency despite the nonlinear nature of this problem. An important ingredient is a simplified state-estimation algorithm, necessary for a real-time implementation of the feedback loop. We also describe the critical role of parity dynamics in the cooling process and present a simple theory that predicts the achievable steady-state atomic energies.  相似文献   

4.
《Comptes Rendus Physique》2016,17(8):836-860
We report a theoretical study of a quantum optical model consisting of an array of strongly nonlinear cavities incoherently pumped by an ensemble of population-inverted two-level atoms. Projective methods are used to eliminate the atomic dynamics and write a generalized master equation for the photonic degrees of freedom only, where the frequency-dependence of gain introduces non-Markovian features. In the simplest single cavity configuration, this pumping scheme gives novel optical bistability effects and allows for the selective generation of Fock states with a well-defined photon number. For many cavities in a weakly non-Markovian limit, the non-equilibrium steady state recovers a Grand-Canonical statistical ensemble at a temperature determined by the effective atomic linewidth. For a two-cavity system in the strongly nonlinear regime, signatures of a Mott state with one photon per cavity are found.  相似文献   

5.
We present a new approach to nonresonant laser deceleration and cooling of atoms based on their interaction with a bistable optical cavity. The cooling mechanism presents a photonic version of Sisyphus cooling, in which the conservative motion of atoms is interrupted by sudden transitions between two stable states of the cavity mode. The mechanical energy is extracted due to the hysteretic nature of those transitions. The bistable character of the cavity may be achieved by an external feedback loop, or by means of nonlinear intracavity optical elements. In contrast to the conventional cavity cooling, in which atoms experience a viscoustype force, bistable cavity cooling imitates “dry friction” and stops atoms much faster. Based on this novel approach, we explore the prospects of using optical bistability for efficient radiation pressure cooling of micromechanical devices that are modeled as a Fabry-Perot resonator with one fixed and one oscillating mirror. In all cases, analytical results are presented, supported by realistic numerical examples.  相似文献   

6.
We report on the observation of Bragg scattering at 1D atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated by the two counterpropagating modes of a laser-driven high-finesse ring cavity. By heterodyning the Bragg-scattered light with a reference beam, we obtain detailed information on phase shifts imparted by the Bragg scattering process. Being deep in the Lamb-Dicke regime, the scattered light is not broadened by the motion of individual atoms.  相似文献   

7.
We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the cavity. The dynamic equations of such a system are derived by using the technique of quantum Langevin operators, and then are studied numerically under different driving conditions. The results show that under certain conditions the cascade two-photon laser can generate chaotic, period doubling, periodic, stable and bistable states. Chaos can be inhibited by atomic populations, atomic coherences, and injected classical field. In addition, no chaos occurs in optical bistability.  相似文献   

8.
We consider a simple model of the lossless interaction between a two-level single atom and a standing-wave single-mode laser field which creates a one-dimensional optical lattice. The internal dynamics of the atom is governed by the laser field, which is treated as classical with a large number of photons. The center-of-mass classical atomic motion is governed by the optical potential and the internal atomic degrees of freedom. The resulting Hamilton-Schrö dinger equations of motion are a five-dimensional nonlinear dynamical system with two integrals of motion, and the total atomic energy and the Bloch vector length are conserved during the interaction. In our previous papers, the motion of the atom has been shown to be regular or chaotic (in the sense of exponential sensitivity to small variations of the initial conditions and/or the system’s control parameters) depending on the values of the control parameters, atom-field detuning, and recoil frequency. At the exact atom-field resonance, the exact solutions for both the external and internal atomic degrees of freedom can be derived. The center-of-mass motion does not depend in this case on the internal variables, whereas the Rabi oscillations of the atomic inversion is a frequency-modulated signal with the frequency defined by the atomic position in the optical lattice. We study analytically the correlations between the Rabi oscillations and the center-of-mass motion in two limiting cases of a regular motion out of the resonance: (1) far-detuned atoms and (2) rapidly moving atoms. This paper is concentrated on chaotic atomic motion that may be quantified strictly by positive values of the maximal Lyapunov exponent. It is shown that an atom, depending on the value of its total energy, can either oscillate chaotically in a well of the optical potential, or fly ballistically with weak chaotic oscillations of its momentum, or wander in the optical lattice, changing the direction of motion in a chaotic way. In the regime of chaotic wandering, the atomic motion is shown to have fractal properties. We find a useful tool to visualize complicated atomic motion-Poincaré mapping of atomic trajectories in an effective three-dimensional phase space onto planes of atomic internal variables and momentum. The Poincaré mappings are constructed using the translational invariance of the standing laser wave. We find common features with typical nonhyperbolic Hamiltonian systems-chains of resonant islands of different sizes imbedded in a stochastic sea, stochastic layers, bifurcations, and so on. The phenomenon of the atomic trajectories sticking to boundaries of regular islands, which should have a great influence on atomic transport in optical lattices, is found and demonstrated numerically.  相似文献   

9.
We propose a scheme for preparing the squeezing of an atomic motion and an Einstein-Podolsky-Rosen state in position and momentum of a pair of distantly separated trapped atoms. The scheme utilizes the quantum nondemolition measurements with interaction between the cavity field and the motional state of the trapped atom in cavity QED. By illuminating the atoms with bichromatic light, the interaction Hamiltonian of the cross-Kerr effect between the cavity and atomic motion is generated to implement quantum nondemolition measurements.Received: 5 February 2003, Published online: 17 July 2003PACS: 03.67.Hk Quantum communication - 32.80.Lg Mechanical effects of light on atoms, molecules, and ions - 42.50.-p Quantum optics  相似文献   

10.
王延娜  赵迪  方爱平  蒋臣威  高韶燕  李福利 《物理学报》2015,64(22):224214-224214
研究了冷原子与法布里-珀罗腔内拉盖尔-高斯横模强耦合相互作用体系的透射光谱, 分析了透射光谱与原子在腔中运动轨迹的关系. 结果表明, 与厄米特-高斯横模相比, 拉盖尔-高斯横模的腔场与原子的最大耦合系数几乎不随阶数的增加而变化, 使得探测光谱的对比度受模式阶数的影响较小. 在拉盖尔-高斯横模场分布的圆环边缘附近, 原子运动轨迹的微小偏移会引起透射光谱的很大变化, 因此在这些位置可以实现原子运动轨迹的高精度探测.  相似文献   

11.
当光学腔中光场处于相干态,而原子处于运动中时,双原子的纠缠演化与光学腔场模结构相关联. 假如初始时刻原子的位置固定在腔中某一位置,双原子的纠缠演化将是无序的.然而,假如一开始双原子在光学腔相干态光场中处于运动状态,则双原子的纠缠随时间的变化将变得规则有序.如此,通过适当的选择双原子的速度和初始光场,就能对双原子的周期性纠缠进行控制,让纠缠在指定时刻出现.  相似文献   

12.
杨贞标  吴怀志  郑仕标 《中国物理 B》2010,19(9):94205-094205
We propose a scheme for the deterministic generation of qutrit entanglement for two atoms trapped in an optical cavity. Taking advantage of the adiabatic passage, the operation is immune to atomic spontaneous emission as the atomic excited states are never populated; under certain conditions, the probability that the cavity is excited is negligible. We also study the influences of the dissipation due to the atomic spontaneous emission and cavity decay.  相似文献   

13.
By means of concurrence, we investigate the dynamics of entanglement between two initially separate atoms in succession passing through a cavity and their interaction with a Fock state field. We then analyze the effects of the atomic coherence, photon number, and atomic motion on the time evolution of atom-atom entanglement. The results show that there can be entanglement between two separate atoms, and that the threshold time for the creation of the entanglement is controllable by the photon number, atomic motion, and field-mode structure.  相似文献   

14.
The transmission spectrum for one atom strongly coupled to the field of a high finesse optical resonator is observed to exhibit a clearly resolved vacuum Rabi splitting characteristic of the normal modes in the eigenvalue spectrum of the atom-cavity system. A new Raman scheme for cooling atomic motion along the cavity axis enables a complete spectrum to be recorded for an individual atom trapped within the cavity mode, in contrast to all previous measurements in cavity QED that have required averaging over 10(3)-10(5) atoms.  相似文献   

15.
We propose two relatively robust schemes to generate controllable (deterministic) atomic W states of three Λ-like atoms interacting with an optical cavity and a laser beam. Losses due to atomic spontaneous emissions and to cavity decay are efficiently suppressed by employing adiabatic passage technique and appropriately designed atom-field couplings. In these schemes the three atoms traverse the cavity-mode and the laser beam and become entangled in the free space outside the cavity.  相似文献   

16.
We study the quantum dynamics of N coherently driven two-level atoms coupled to an optical resonator. In the strong coupling regime the cavity field generated by atomic scattering interferes destructively with the pump on the atoms. This suppresses atomic excitation and even for strong driving fields prevents atomic saturation, while the stationary intracavity field amplitude is almost independent of the atom number. The magnitude of the interference effect depends on the detuning between laser and cavity field and on the relative atomic positions and is strongest for a wavelength spaced lattice of atoms placed at the antinodes of the cavity mode. In this case three dimensional intensity minima are created in the vicinity of each atom. In this regime spontaneous emission is suppressed and the dominant loss channel is cavity decay. Even for a cavity linewidth larger than the atomic natural width, one regains strong interference through the cooperative action of a sufficiently large number of atoms. These results give a new key to understand recent experiments on collective cavity cooling and may allow to implement fast tailored atom-atom interactions as well as nonperturbative particle detection with very small energy transfer.Received: 18 May 2004, Published online: 19 October 2004PACS: 32.80.Pj Optical cooling of atoms; trapping - 42.50.Pq Cavity quantum electrodynamics; micromasers - 42.50.Fx Cooperative phenomena in quantum optical systems  相似文献   

17.
The number of atoms trapped within the mode of an optical cavity is determined in real time by monitoring the transmission of a weak probe beam. Continuous observation of atom number is accomplished in the strong coupling regime of cavity quantum electrodynamics and functions in concert with a cooling scheme for radial atomic motion. The probe transmission exhibits sudden steps from one plateau to the next in response to the time evolution of the intracavity atom number, from N>or=3 to N=2-->1-->0 atoms, with some trapping events lasting over 1 s.  相似文献   

18.
Long R  Tuchman AK  Kasevich MA 《Optics letters》2007,32(17):2502-2504
We present a frequency modulation scheme to detect atoms dispersively in a high-finesse optical cavity at low-light levels with immunity to cavity length fluctuations. We use multiple cavity resonances to provide common mode noise rejection, keeping the high intensity carrier off-resonant from all cavity modes. The method has applications in atomic squeezed state generation and quantum metrology.  相似文献   

19.
We have realized a hybrid optomechanical system by coupling ultracold atoms to a micromechanical membrane. The atoms are trapped in an optical lattice, which is formed by retroreflection of a laser beam from the membrane surface. In this setup, the lattice laser light mediates an optomechanical coupling between membrane vibrations and atomic center-of-mass motion. We observe both the effect of the membrane vibrations onto the atoms as well as the backaction of the atomic motion onto the membrane. By coupling the membrane to laser-cooled atoms, we engineer the dissipation rate of the membrane. Our observations agree quantitatively with a simple model.  相似文献   

20.
邹艳 《中国物理 B》2010,19(7):74207-074207
We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity.Our numerical calculations indicate that the squeezing period,the squeezing time and the maximal squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure.The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field.Moreover,there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号