首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
Shearing of a simple nonpolar film, right after the liquid-to-solid phase transition under nanometer confinement, is studied by using a liquid-vapor molecular dynamics simulation method. We find that, in contrast with the shear melting and recrystallization behavior of the solidlike phase during the stick-slip motion, interlayer slips within the film and wall slips at the wall-film interface are often observed. The ordered solidified film is well maintained during the slip. Through the time variations of the frictional force and potential energy change within the film, we find that both the friction dissipation during the slip and the potential energy decay after the slip in the solidified film take a fairly large portion of the total energy dissipation.  相似文献   

2.
We report on an experimental study of heterogeneous slip instabilities generated during stick-slip motions at a contact interface between a smooth rubber substrate and a patterned glass lens. Using a sol-gel process, the glass lens is patterned with a lattice of parallel ridges (wavelength, 1.6 μm, amplitude 0.35 μm). Friction experiments using this patterned surface result in the systematic occurrence of stick-slip motions over three orders of magnitude in the imposed driving velocity while stable friction is achieved with a smooth surface. Using a contact imaging method, real-time displacement fields are measured at the surface of the rubber substrate. Stick-slip motions are found to involve the localized propagation of transverse interface shear cracks whose velocity is observed to be remarkably independent on the driving velocity.  相似文献   

3.
4.
梅涛  陈占秀  杨历  王坤  苗瑞灿 《物理学报》2019,68(9):94701-094701
纳米流动系统具有高效、经济等优势,在众多领域具有广泛的应用前景.因该类系统具有极高的表面积体积比,致使界面滑移效应对流动具有显著影响.本文采用分子动力学方法以两无限大平行非对称壁面组成的Poiseuille流动为对象,分析了壁面粗糙度与润湿性变化对通道内流体流动的影响.对于不同结构类型的壁面,需要通过水动力位置来确定固液界面位置,准确计算固液界面位置有助于更好地分析界面滑移效应.研究结果表明,上下壁面不对称会引起通道内流场参数分布的不对称,壁面粗糙度及润湿性的变化会影响近壁面附近流体原子的流动特性,由于壁面凹槽的存在,粗糙壁面附近的数密度分布低于光滑壁面一侧.壁面粗糙度及润湿性的变化会影响固液界面位置,肋高变化及壁面润湿性对通道中速度分布影响较大,界面滑移速度及滑移长度随肋高和润湿性的增大而减小;肋间距变化对通道内流体流动影响较小,界面滑移速度和滑移长度基本保持恒定.  相似文献   

5.
纳米通道内液体流动的滑移现象   总被引:8,自引:0,他引:8       下载免费PDF全文
曹炳阳  陈民  过增元 《物理学报》2006,55(10):5305-5310
采用分子动力学模拟方法研究了液态氩在铂纳米通道内的流动,通过改变流体和壁面之间的势能作用获得了流体和通道表面之间浸润性质不同时的滑移现象. 研究发现:液体分子在亲水性通道表面附近呈类固体性质,数密度和有序性较大,而在疏水性表面附近的平均数密度降低,形成一个低密度层;液体流动在固体表面的速度滑移随着液体与表面势能作用的增强而减小,当液体和表面的浸润性不同时可以发生滑移、表观无滑移和负滑移现象;液体在固体表面的表观滑移是液体在固体表面的速度滑移、粘附和流体内部滑移的综合作用的结果. 关键词: 纳米尺度流动 速度滑移 浸润性 分子动力学模拟  相似文献   

6.
许少锋  楼应侯  吴尧锋  王向垟  何平 《物理学报》2019,68(10):104701-104701
了解疏水表面的滑移规律对其在流动减阻方面的应用至关重要.利用耗散粒子动力学(dissipative particle dynamics, DPD)方法研究了微通道疏水表面的滑移现象.采用固定住的粒子并配合修正的向前反弹机制,构建了DPD固体壁面边界模型,利用该边界模型模拟了平板间的Couette流动.研究结果表明,通过调整壁面与流体间排斥作用强度,壁面能实现从无滑移到滑移的转变,壁面与流体间排斥作用越强,即疏水性越强,壁面滑移越明显,并且滑移长度与接触角之间存在近似的二次函数关系.无滑移时壁面附近密度分布均匀,有滑移时壁面附近存在低密度区域,低密度区域阻碍了动量传递,致使壁面产生滑移.  相似文献   

7.
针对双尺度结构表面疏油特性的优异性,采用分子动力学的方法建立油液流体正十六烷烃分子模型,研究双尺度结构壁面润湿性影响下的纳米通道内流体的流动特性,通过对通道壁面亲疏油性下的双尺度结构的构建,与光滑壁面和单尺度壁面进行比较来探究双尺度纳米通道表面结构影响下油液流体在纳米通道内密度分布、速度分布、速度滑移和滑移长度的影响.模拟结果表明:对于亲油通道壁面,双尺度结构壁面亲油性明显加强,主流区域流体密度、流体速度和速度滑移都减小,甚至出现负滑移;而对于疏油通道壁面,双尺度分层结构能加强壁面的疏油性,通道内壁面形成稳定的气层使流体主流区域的密度增大,并且通道内流体的速度、速度滑移和滑移长度明显大于光滑和单尺度结构壁面.因此,纳米通道内双尺度结构能改变通道壁面的润湿性,并且能够加强流体在纳米疏油通道内的滑移减阻效应,为纳米通道内油液运输以及润滑薄膜减阻提供了设计基础.  相似文献   

8.
Even the most regular stick-slip frictional sliding is always stochastic, with irregularity in both the intervals between slip events and the sizes of the associated stress drops. Applying small-amplitude oscillations to the shear force, we show, experimentally and theoretically, that the stick-slip periods synchronize. We further show that this phase locking is related to the inhibition of slow rupture modes which forces a transition to fast rupture, providing a possible mechanism for observed remote triggering of earthquakes. Such manipulation of collective modes may be generally relevant to extended nonlinear systems driven near to criticality.  相似文献   

9.
Direct experimental evidence of slip in hexadecane: solid interfaces   总被引:1,自引:0,他引:1  
The boundary condition for the flow velocity of a Newtonian fluid near a solid wall has been probed experimentally with a novel setup using total internal reflection-fluorescence recovery after photobleaching leading to a resolution from the wall of the order of 80 nm. For hexadecane flowing on a hydrocarbon/lyophobic smooth surface, we give what we think to be the first direct experimental evidence of noticeable slip at the wall. We show that the surface roughness and the strength of the fluid-surface interactions both act on wall slip, in antagonist ways.  相似文献   

10.
The specific objective of the present work study is to propose an anisotropic slip boundary condition for three-dimensional (3D) simulations with adjustable streamwise and spanwise slip length by the discrete unified gas kinetic scheme (DUGKS). The present boundary condition is proposed based on the assumption of nonlinear velocity profiles near the wall instead of linear velocity profiles in a unidirectional steady flow. Moreover, a 3D corner boundary condition is introduced to the DUGKS to reduce the singularities. Numerical tests validate the effectiveness of the present method, which is more accurate than the bounce-back and specular reflection slip boundary condition in the lattice Boltzmann method. It is of significance to study the lid-driven cavity flow due to its applications and its capability in exhibiting important phenomena. Then, the present work explores, for the first time, the effects of anisotropic slip on the two-sided orthogonal oscillating micro-lid-driven cavity flow by adopting the present method. This work will generate fresh insight into the effects of anisotropic slip on the 3D flow in a two-sided orthogonal oscillating micro-lid-driven cavity. Some findings are obtained: The oscillating velocity of the wall has a weaker influence on the normal velocity component than on the tangential velocity component. In most cases, large slip length has a more significant influence on velocity profiles than small slip length. Compared with pure slip in both top and bottom walls, anisotropic slip on the top wall has a greater influence on flow, increasing the 3D mixing of flow. In short, the influence of slip on the flow field depends not only on slip length but also on the relative direction of the wall motion and the slip velocity. The findings can help in better understanding the anisotropic slip effect on the unsteady microflow and the design of microdevices.  相似文献   

11.
We discuss the stick-slip motion of an elastic block sliding along a rigid substrate. We argue that for a given external shear stress this system shows a discontinuous nonequilibrium transition from a uniform stick state to uniform sliding at some critical stress which is nothing but the Griffith threshold for crack propagation. An inhomogeneous mode of sliding occurs when the driving velocity is prescribed instead of the external stress. A transition to homogeneous sliding occurs at a critical velocity, which is related to the critical stress. We solve the elastic problem for a steady-state motion of a periodic stick-slip pattern and derive equations of motion for the tip and resticking end of the slip pulses. In the slip regions we use the linear friction law and do not assume any intrinsic instabilities even at small sliding velocities. We find that, as in many other pattern forming system, the steady-state analysis itself does not select uniquely all the internal parameters of the pattern, especially the primary wavelength. Using some plausible analogy to first-order phase transitions we discuss a soft selection mechanism. This allows to estimate internal parameters such as crack velocities, primary wavelength and relative fraction of the slip phase as functions of the driving velocity. The relevance of our results to recent experiments is discussed.  相似文献   

12.
王胜  徐进良  张龙艳 《物理学报》2017,66(20):204704-204704
采用分子动力学方法研究了流体在非对称浸润性粗糙纳米通道内的流动与传热过程,分析了两侧壁面浸润性不对称对流体速度滑移和温度阶跃的影响,以及非对称浸润性组合对流体内部热量传递的影响.研究结果表明,纳米通道主流区域的流体速度在外力作用下呈抛物线分布,但是纳米通道上下壁面浸润性不对称导致速度分布不呈中心对称,同时通道壁面的纳米结构也会限制流体的流动.流体在流动过程中产生黏性耗散,使流体温度升高.增强冷壁面的疏水性对近热壁面区域的流体速度几乎没有影响,滑移速度和滑移长度基本不变,始终为锁定边界,但是会导致近冷壁面区域的流体速度逐渐增大,对应的滑移速度和滑移长度随之增大.此时,近冷壁面区域的流体温度逐渐超过近热壁面区域的流体温度,流体出现反转温度分布,流体内部热流逆向传递.随着两侧壁面浸润性不对称程度增加,流体反转温度分布更加明显.  相似文献   

13.
We study the origins of the dynamic contact angle in a two-dimensional lattice-Boltzmann model of immiscible fluids. We show that the dynamic contact angle changes as a function of capillary number as observed in laboratory experiments and explain how this dependence arises in the lattice-Boltzmann model. We also explain how the fluid-fluid interface can move while retaining its shape. The interface has an apparent slip length. The apparent slip follows the classical Navier slipping rule where the velocity of the fluid at the wall is proportional to the viscous stress at the wall. This apparent slip length is proportional to the viscous length scale associated with the spurious flow induced by uncompensated stress at the three-phase contact point.  相似文献   

14.
Using molecular dynamics simulations, we study the motion of a closely fitting nanometer-size solid sphere in a fluid-filled cylindrical nanochannel at low Reynolds numbers. At early times, when the particle is close to the middle of the tube, its velocity is in agreement with continuum calculations, despite large thermal fluctuations. At later times, partially wetting fluids exhibit novel adsorption phenomena: the sphere meanders away from the center of the tube and adsorbs onto the wall, and subsequently either sticks to the wall and remains motionless on average, or separates slightly from the tube wall and then either slips parallel to the mean flow or executes an intermittent stick-slip motion.  相似文献   

15.
The magnetohydrodynamic(MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied.Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be applied to a flow configuration with any arbitrary velocity distributions. Seven typical sheet velocity profiles are employed as illustrating examples. The solutions to the slip MHD flow are derived from the general solution and discussed in detail. Different from self-similar boundary layer flows, the flows studied in this work have solutions in explicit analytical forms. However, the current flows require special mass transfer at the wall, which is determined by the moving velocity of the sheet. The effects of the slip parameter, the mass transfer at the wall, and the magnetic field on the flow are also demonstrated.  相似文献   

16.
Lamellar systems are self-assemblies of surfactant molecules forming planar bilayers separated by layers of solvent. At sufficiently high shear rates, they are known to form spherical objects often referred to as onions. In this paper, we are concerned with the effect of shear on those multi-lamellar vesicles. We measure solvent diffusion by nuclear magnetic resonance (NMR) using a method which is sensitive to the time dependence of mean-squared displacements. This method, combined with NMR velocimetry, allows us to infer onion structure as a function of shear rate, identifying different regimes in which local viscosity is related to the onion size. The role of slip is examined and the stress dependence of wall slip velocities is determined.  相似文献   

17.
Drag reduction on a patterned superhydrophobic surface   总被引:1,自引:0,他引:1  
We present an experimental study of a low-Reynolds number shear flow between two surfaces, one of which has a regular grooved texture augmented with a superhydrophobic coating. The combination reduces the effective fluid-surface contact area, thereby appreciably decreasing the drag on the surface and effectively changing the macroscopic boundary condition on the surface from no slip to limited slip. We measure the force on the surface and the velocity field in the immediate vicinity on the surface (and thus the wall shear) simultaneously. The latter facilitates a direct assessment of the effective slip length associated with the drag reduction.  相似文献   

18.
张程宾  许兆林  陈永平 《物理学报》2014,63(21):214706-214706
为研究粗糙表面对纳尺度流体流动和传热及其流固界面速度滑移与温度阶跃的影响,本文建立了粗糙纳通道内流体流动和传热耦合过程的分子动力学模型,模拟研究了粗糙通道内流体的微观结构、速度和温度分布、速度滑移和温度阶跃并与光滑通道进行了比较,并分析了固液相互作用强度和壁面刚度对界面处速度滑移和温度阶跃的影响规律. 研究结果表明,在外力作用下,纳通道主流区域的速度分布呈抛物线分布,由于流体流动导致的黏性耗散使得纳通道内的温度分布呈四次方分布. 并且,在固体壁面处存在速度滑移与温度阶跃. 表面粗糙度的存在使得流体剪切流动产生了额外的黏性耗散,使得粗糙纳通道内的流体速度水平小于光滑通道,温度水平高于光滑通道,并且粗糙表面的速度滑移与温度阶跃均小于光滑通道. 另外,固液相互作用强度的增大和壁面刚度的减小均可导致界面处速度滑移和温度阶跃程度降低. 关键词: 速度滑移 温度阶跃 流固界面 粗糙度  相似文献   

19.
We study the effect of shear flow on the entropic Helfrich interaction in lyotropic surfactant smectic fluids. Arguing that flow induces an effective anisotropic surface tension in bilayers due to a combination of intermonolayer friction, bilayer collisions and convection, we calculate the reduction in fluctuations and hence the renormalised change in effective compression modulus and steady-state layer spacing. We demonstrate that non-permeable or slowly permeating membranes can be susceptible to an undulatory instability of the Helfrich-Hurault type, and speculate that such an instability could be one source of a transition to multilamellar vesicles.  相似文献   

20.
Techniques have been developed that facilitate the measurement and imaging of the charge exchanged between metal-insulator surfaces in relative motion. In the regime where the forces of friction lead to stick-slip motion, we find that the charge transfer accompanying the slip events is proportional to the force jumps and is bunched at the stick locations. The constant of proportionality is measured in electron volts per angstrom and has a small variance over a large range of slip sizes, suggesting that in these experiments macroscopic friction originates from and scales to the intrinsic electronic interactions that form between metal and insulator surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号