首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on electron spin resonance (ESR) experiments on the Heusler alloy YbRh2Pb and compare its spin dynamics with that of several other Yb-based intermetallics. A detailed analysis of the derived ESR parameters indicates the extremely weak hybridization, more localized distribution of the 4f states, and a smaller RKKY interaction in YbRh2Pb. These findings reveal the important interplay between hybridization effects, chemical substitution, and crystalline electric field interactions that determines the ground state properties of strongly correlated electron systems.  相似文献   

2.
Electron spin resonance (ESR) in the Kondo lattice compound YbRh(2)Si(2) has stimulated discussion as to whether the low-field resonance outside the Fermi liquid regime in this material is more appropriately characterized as a local-moment phenomenon or one that requires a Landau quasiparticle interpretation. In earlier work, we outlined a collective mode approach to the ESR that involves only the local 4f moments. In this paper, we extend the collective mode approach to a situation where there are two subsystems of unlike spins: the pseudospins of the ground multiplet of the Yb ions and the spins of the itinerant conduction electrons. We assume a weakly anisotropic exchange interaction between the two subsystems. With suitable approximations our expression for the g-factor also reproduces that found in recent unlike-spin quasiparticle calculations. It is pointed out that the success of the local-moment approach in describing the resonance is due to the fact that the susceptibility of the Yb subsystem dominates that of the conduction electrons with the consequence that the relative shift in the resonance frequency predicted by the unlike-spin models (and absent in the local-moment models) is ? 1. The connection with theoretical studies of a two-component model with like spins is also discussed.  相似文献   

3.
An electron spin resonance (ESR) signal was observed in a concentrated Kondo lattice, Heusler alloy YbRh2Pb. It is attributed to the combined effect of the 4f local magnetic moments of Yb3+ and conduction electrons. It is shown that the significant broadening and disappearance of the ESR line at temperatures above 20 K is caused by the processes of the spin-lattice relaxation of the Yb3+ ions through the first excited Stark doublet with an activation energy Δ ≈ 73.5 K. A comparison of the ESR data for YbRh2Pb and some other undoped intermetallic compounds based on ytterbium, cerium, and europium indicates that hybridized electronic states occurring as the result of hybridization between the localized 4f electrons and the collectivized conduction electrons constitute a fundamentally new source of ESR.  相似文献   

4.
The possibility of resonance absorption in the terahertz range caused by the sd-exchange interaction at the incidence of an electromagnetic wave on a ferromagnetic metal has been predicted. The absorption coefficient has been calculated. It has been shown that the resonance frequency is determined by the magnetization of a ferromagnet and the absorption coefficient additionally depends on the orientation of the magnetization with respect to the plane of polarization of the wave.  相似文献   

5.
We report a 29Si NMR study on aligned single crystals of YbRh2Si2 which shows behavior characteristic of a quantum critical point (QCP: T(N)-->0). The Knight shift K and the nuclear spin-lattice relaxation rate 1/T(1) of Si show a strong dependence on the external field H, especially below 5 kOe. At the lowest H used in this measurement (H approximately 1.5 kOe), it was found that 1/T(1)T continues to increase down to 50 mK, whereas K stays constant with a large magnitude below 200 mK. This result strongly suggests the development of antiferromagnetic fluctuations with finite q vectors that compete with q=0 spin fluctuations in the vicinity of the QCP near H=0.5 kOe.  相似文献   

6.
Spin fluctuations of the archetypal heavy fermion compound CeRu2Si2 have been investigated by neutron scattering in an entire irreducible Brillouin zone. The dynamical susceptibility is remarkably well described by the self-consistent renormalization (SCR) theory of the spin fluctuation in a phenomenological way, proving the effectiveness of the theory. The present analysis using the SCR phenomenology has allowed us to determine 14 exchange constants, which show the long-range nature of the Ruderman-Kittel-Kasuya-Yosida interaction.  相似文献   

7.
The diluted Anderson model is studied, in which a fraction c of sites have a strongly correlated f-orbital. The two-band version of the Gutzwiller method is used to describe the ground state. As c varies from 0 to 1, the Kondo exponent gradually decreases from the single ion value to the lattice value derived by Rice and Ueda.  相似文献   

8.
Electron spin resonance (ESR) measurements of the ferromagnetic (FM) Kondo lattice system CeRuPO show a well defined ESR signal which is related to the Ce3+ magnetism. In contrast, no ESR could be observed in the antiferromagnetic (AFM) homologue CeOsPO. Additionally, we detect an ESR signal in ferromagnetic YbRh while it was absent in a number of Ce or Yb intermetallic compounds with dominant AFM exchange. Thus, the observation of an ESR signal in a Kondo lattice is neither specific to Yb nor to the proximity to a quantum critical point, but seems to be connected to the presence of FM fluctuations. These conclusions not only provide a basic concept to understand the ESR in Kondo lattice systems even well below the Kondo temperature (as observed in YbRh2Si2) but point out ESR as a prime method to investigate directly the spin dynamics of the Kondo ion.  相似文献   

9.
The ESR of the system Yb: AuxAg1?x has been investigated for 0.7 ? x ? 1. The g-shift (Δg) and the temperature derivative of the linewidth (ΔHΔT) increase with decreasing Au concentration. For T ? 2°K effects in (ΔHΔT) are observed, which are attributed to the Kondo effect.  相似文献   

10.
We study the interplay between the spin-liquid and Kondo physics, as related to the nonmagnetic part of the phase diagram of heavy fermion materials. Within the unrestricted mean-field treatment of the infinite-U 2D Anderson-Heisenberg model, we find that there are two topologically distinct nondegenerate uniform heavy Fermi liquid states that may form as a consequence of the Kondo coupling between spinons and conduction electrons. For certain carrier concentrations, the uniform Fermi liquid becomes unstable with respect to the formation of a new kind of anharmonic "Kondo stripe" state with inhomogeneous Kondo screening strength and the charge density modulation. These features are experimentally measurable and thus may help to establish the relevance of the spin-liquid correlations to heavy fermion materials.  相似文献   

11.
The ground state properties of CeFePO, a homologue of the new high temperature superconductors RFePnO1-xFx, were studied by means of susceptibility, specific heat, resistivity, and NMR measurements on polycrystals. All the results demonstrate that this compound is a magnetically nonordered heavy fermion metal with a Kondo temperature TK approximately 10 K, a Sommerfeld coefficient gamma=700 mJ/mol K2, and a mass enhancement factor of the order of 50. Analysis of the susceptibility data and of the spin relaxation time indicates that the strong electronic correlation effects originate from the Ce-4f electrons rather than from Fe-3d electrons. An enhanced Sommerfeld-Wilson ratio R=5.5 as well as a Korringa product S0/T1TK2 approximately 0.065 well below 1 indicate the presence of ferromagnetic correlations. Therefore, CeFePO appears to be on the nonmagnetic side of a ferromagnetic instability.  相似文献   

12.
We propose a two-stage spin-quenching scenario for the unusual heavy fermion state realized in the mixed valent metal LiV2O4. In this theory, local valence fluctuations are responsible for the formation of partially quenched, spin-1 / 2 moments below room temperature. Frustration of the intersite spin couplings then drives the system to produce the heavy Fermi liquid seen at low temperatures. The anomalous resistivity and the sign change of the Hall constant can be understood naturally within this model, which also predicts a unique symmetry for the heavy quasiparticle bands that may be observed in de Haas-van Alphen experiments.  相似文献   

13.
Electronic states of P donors in Si nanocrystals (nc-Si) embedded in insulating glass matrices have been studied by electron spin resonance. Doping of P donors into nc-Si was demonstrated by the observation of optical absorption in the infrared region due to intraconduction band transitions. P hyperfine structure (hfs) was successfully observed at low temperatures. The observed splitting of the hfs was found to be much larger than that of the bulk Si:P and depended strongly on the size of nc-Si. The observed strong size dependence indicates that the enhancement of the hyperfine splitting is caused by the quantum confinement of P donors in nc-Si.  相似文献   

14.
Calculations are presented which support the identification of two sulfur-related centers in Si (lying 0.37 and 0.19 eV below the conduction band minima) with (S, S)+ and (S, S)0 nearest-neighbor substitutional S pairs. Explanations in terms of meso-bonding are given of the following facts: (i) Although S is much more electronegative than Si, the (S, S)+ pair level lies at higher energy than the S+ level by ? 0.2 eV; (ii) The hyperfine interaction for (S, S)+ is considerably smaller than for the isolated S defect; and (iii) The (S, S)+ molecular defect has a hyperfine tensor that is virtually isotropic.  相似文献   

15.
We report dc-magnetization measurements on YbRh2Si2 at temperatures down to 0.04 K, magnetic fields B< or =11.5 T, and under hydrostatic pressure P< or =1.3 GPa. At ambient pressure a kink at B* =9.9 T indicates a new type of field-induced transition from an itinerant to a localized 4f state. This transition is different from the metamagnetic transition observed in other heavy-fermion compounds, as here ferromagnetic rather than antiferromagnetic correlations dominate below B*. Hydrostatic pressure experiments reveal a clear correspondence of B* to the characteristic spin fluctuation temperature determined from specific heat.  相似文献   

16.
Replacement of one hydrogen atom by deuterium in the negative ion of cyclo-octatetraene, makes no significant difference to the electron spin densities at the hydrogen nuclei. This result contrasts with a recent observation that mono-deuteration produces a measurable change in the spin distribution in the benzene negative ion. The difference between the two systems is interpreted in terms of the Jahn-Teller effect.  相似文献   

17.
The structure of CeCu2Si2, isotypic with ThCr2Si2, has been refined in a single-crystal study. The atomic parameters were used in self-consistent LMTO band structure calculations for CeCu2Si2 and isostructural LaCu2Si2. The results are analysed in terms of energy levels, charge distribution and in particular Fermi surface properties. The Ce-4f levels are situated mainly aboveE F , except near the Γ-point. The density-of-states atE F is large and heavily concentrated around the Ce-4f band. This makes local Ce 4f fluctuations possible, while interaction with the rest of the band structure is small. The comparison with LaCu2Si2 shows that the additional Cef electron is partly promoted into the non-f bands. Large enhancement factors are required to bring band results into agreement with observed specific heat and magnetic critical field. Strong Fermi surface anisotropies are pointed out for both compounds suggesting new experiments on single crystals.  相似文献   

18.
A model of spin relaxation of Kondo lattices is proposed to explain the angular dependence of the electron spin resonance (ESR) parameters in the heavy fermion compounds Y bIr(2)Si(2) and Y bRh(2)Si(2). A perturbational scaling approach reveals a collective spin motion of Yb?ions with conduction electrons in the bottleneck regime. A common energy scale due to the Kondo effect regulates the temperature dependence of different kinetic coefficients to result in a mutual cancelation of all divergent parts in a collective spin mode. The angular dependence of the ESR intensity, linewidth and resonant frequency is shown to be in good agreement with experimental data on Y bIr(2)Si(2) and Y bRh(2)Si(2). In particular, the unexpectedly weak dependence of the ESR intensity on the orientation of the microwave magnetic field agrees with the properties of the discussed model.  相似文献   

19.
The dynamics of impurity spin contained by nonmagnetic host metal is investigated theoretically. The pseudofermion representation proposed byAbrikosov is applied to impurity spin. The calculations are carried out keeping only the leading logarithmic terms in any order of the perturbation theory. This approximation is adequate only above the Kondo temperature. Abrikosov's method is slightly modified to treat the spin dynamics. The real and the imaginary part of the pseudofermion self-energy is calculated. The imaginary part of the self-energy satisfies a simple relation which holds between the electron and pseudofermion self-energies. The decrease in the effective gyromagnetic factor is determined, which shows how the spin compensated state begins to form at low temperature. The first terms of the power series of the static susceptibility calculated from the pseudofermion Green function are in agreement with the results of the previous perturbative calculations given by e.g.Yosida andOkiji. The spectral function of the pseudofermion propagator is discussed in details. It has a long tail at large positive energies and satisfies the sum rule \(\int\limits_{{}^\_\infty }^\infty {d\omega \rho (\omega ) = 1} \) . The dynamic susceptibility and other physical quantities will be presented in the second part of this paper.  相似文献   

20.
We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly correlated Ce system CeCu2Si2. By exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level E(F). We also present theoretical predictions based on the single-impurity Anderson model using an extended noncrossing approximation, including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu2Si2 can be described by single-impurity Kondo physics down to T approximately 5 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号