首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on magnetoresistance measurements in longitudinal and transverse magnetic fields up to 320 kG for silver and gold containing rare-earth impurities. We focus mainly on the strong anisotropy of the magnetoresistance related to the scattering of conduction electrons by the 4f quadrupoles (non-S ions) and we derive the magnitude of the electron-quadrupole interaction from the analysis of the results. We also consider the isotropic contribution to the magnetoresistance due to exchange scattering. In a number of alloys this contribution is negative in low fields, as this is usually observed in magnetic alloys, but becomes positive in high fields. This change of spin can be ascribed to crystal-field effects.  相似文献   

2.
孟康康  赵旭鹏  苗君  徐晓光  赵建华  姜勇 《物理学报》2018,67(13):131202-131202
在铁磁/非磁金属异质结中,界面处的Dzyaloshinskii-Moriya相互作用会诱导诸如磁性斯格明子等手性磁畴壁结构的形成.当巡游电子通过手性磁畴壁结构时,会获得一个贝里相位,而相应的贝里曲率则等效于一个外磁场,它将诱导额外的霍尔效应,即拓扑霍尔效应.拓扑霍尔效应是当前磁性斯格明子和自旋电子学研究领域的热点之一.本文由实空间贝里相位出发,简要介绍了拓扑霍尔效应的物理机制;然后着重讨论了铁磁/非磁金属异质结中的拓扑霍尔效应,包括磁性多层膜中和MnGa/重金属双层膜中的拓扑霍尔效应.这两种结构都可以通过改变材料的厚度、种类、生长方式等调控界面Dzyaloshinskii-Moriya相互作用,从而有效地调控磁性斯格明子和拓扑霍尔效应.  相似文献   

3.
本文采用第一性原理赝势平面波法, 计算并分析了稀土Gd掺杂磷烯的物理结构、电子结构、磁性以及光学性质. 计算表明: 在掺杂原子Gd附近引起了磷烯物理结构上的变化. 能带数量明显增多变密, 带隙变窄由0.921eV变为0.578eV. 同时, 由于Gd原子的4f和5d轨道电子两种自旋取向分布具有不对称性, 给体系引入了强磁性, 计算得到的自旋磁矩为7.470B. 磷烯材料的复介电函数是各向异性的, 同时可以得出磷烯材料在其它光学性质方面也是各向异性的. Gd掺杂后使材料的介电性能增强. 在紫外光的能量范围内, 不同极化方向上的反射率和损失函数的峰值降低, 说明Gd的掺入使材料对紫外光的敏感度有所减弱. 希望以上研究结果能为新型二维材料磷烯在光电和稀磁半导体材料的设计与开发方面提供理论依据.  相似文献   

4.
The spin echo NMR spectra of 59Co in R2(Co1-xMnx)17, (R = Y, Gd) measured at 4.2 K are reported. The large shift of resonance lines is observed, that is explained as caused by reorientation of easy axis of magnetisation from easy plane to easy direction (c axis). It is suggested to explain quantitatively the spectra, that only two of four Co sites (9d and 18f) in R2Co17 structure play a dominant role in determining of anisotropy energy and the Co atoms at the 6c sites (“dumb-bell” atoms) give no direct contribution to the anisotropy energy of the compound. The corresponding changes of local anisotropy energy and the orbital part of cobalt magnetic moment characteristic for each of cobalt structural sites are calculated and discussed.  相似文献   

5.
In rare earth metals, one can neglect interactions between 4f shells centred on neighbouring sites. The conduction band is occupied by three sd electrons (eventually two in europium and ytterbium). These sd electrons are coupled to the f electrons through an interaction of the form where s e is the spin of a conduction electron and Sf i the spin of the ith f electron of a given ion. It is therefore possible to consider two groups of properties:

1. The ones, related to the nature of the conduction electrons, change very little through the series: this is the case of the crystalline structure, of the atomic volume.

2. The others, such as the magnetic properties, are related to the internal shells and vary with the filling of the 4f shell. Experiment shows a correlation between those two groups of properties. De Gennes formalism, essentially valid in the hypothesis of tightly bound 4f electrons, gives a satisfactory picture of the properties of the metals in the second half of the series, but it does not give as good a picture for the first rare earth metals, especially for cerium. In the cerium free atom, the 4f, 5d, 6s states have comparable energies and one might think that, in the trivalent metal, the 4f states are broadened in energy by resonances with the extended sd states, but still do not overlap from one atom to the other. They would then occupy virtual bound states analogous to the virtual bound states described by Blandin and Friedel for the transition impurities in noble metals.

An identical situation seems to occur in ytterbium under pressure: one observes a huge increase of the electrical resistivity which goes back to low values at very high pressures. This might also be the case of the actinide metals, especially of Plutonium, in which the 5f states begin to stabilize. So we have to consider two cases:

1. The 4f electrons occupy bound states.

2. The 4f electrons occupy virtual bound states.

In the first part (§ 2), we use de Gennes formalism for 4f bound states. The energy related to magnetic interactions is computed making the assumption of a spherical Fermi surface. A correlation between the crystalline structure and the magnetic properties shows up. In the second half of the series, one can neglect the crystalline field effects and the total energy is the sum of the magnetic term and of the elastic term due to the contribution of the conduction electrons. For every state of magnetic order, the crystalline structure is well defined, corresponding to the minimum of the total energy, and conversely. It is possible to explain in this manner:

1. The b.c.c. structure of europium, which is unusual for a divalent transition metal.

2. The variation of the c/a ratio of the h.c.p. structure both through the series and with temperature.

3. The anomalies in the thermal expansion coefficient observed below the magnetic order-disorder transitions.

4. The helix pitch of the magnetic configurations of this type.

The anomalies of the thermoelectric power observed at the transition points are related to the different dependences of the spin correlations above and below the transition temperatures. The agreement between theory and experiment is satisfactory. Some discrepancy can be attributed to the rather crude approximation of a spherical Fermi surface.

In the second part (§ 3), we deal with a situation where the 4f electrons occupy virtual bound states. These levels are very narrow, about 10?2 ev wide, and separated in energy by the correlations between electrons. Using Blandin's formalism we calculate the electrical and magnetic properties associated with such a situation. Calculations lead to very strong magnetic coupling; the indirect interaction between magnetic ions is antiferromagnetic for first nearest neighbours, whereas in the case of 4f bound states it is ferromagnetic. Finally, it is possible to explain the properties of cerium and ytterbium.

1. In Cerium, the two first levels overlap at the Fermi level, in such a way that the f electron be almost entirely distributed in the first level.

2. In ytterbium, under pressure, the fourteenth level comes across and above the Fermi level. The maximum resistivity is obtained for a half filling of this level.

In the third part (§ 4), we attempt to apply this model of virtual bound states to plutonium, although in this metal, the 5f shells have a larger spatial extension than the 4f orbitals in rare earths. Anomalies in several physical properties of plutonium seem to indicate a magnetic transition at about 65° K, but no anomaly shows up in the magnetic susceptibility. Using a virtual bound state model associated with a very small polarization of the 5f states, it is possible to explain all the physical properties of plutonium. This model leads to a very small magnetic moment, that cannot be detected by experiment.  相似文献   

6.
The effects of mono-doping of 4f lanthanides with and without oxygen vacancy defect on the electronic structures of anatase TiO2 have been studied by first-principles calculations with DFT+U (DFT with Hubbard U correction) to treat the strong correlation of Ti 3d electrons and lanthanides 4f electrons. Our results revealed that dopant Ce is easy to incorporate into the TiO2 host by substituting Ti due to its lower substitutional energy (∼−2.0 eV), but the band gap of the system almost keeps intact after doping. The Ce 4f states are located at the bottom of conduction band, which mainly originates from Ti 3d states. The magnetic moment of doped Ce disappears due to electron transfer from Ce to the nearest O atoms. For Pr and Gd doping, their substitutional energies are similar and close to zero, indicating that both of them may also incorporate into the TiO2 host. For Pr doping, some 4f spin-down states are located next to the bottom of the conduction band and narrow the band gap of the doping system. However, for Gd doping, the 4f states are located in deep valence band and there is no intermediate band in the band gap. The magnetic moment of dopant Gd is close to the value of isolated Gd atom (∼7 μB), indicating no overlapping between Gd 4f with other orbitals. For Eu, it is hard to incorporate into the TiO2 host due to its very higher substitutional energy. The results also indicated that oxygen vacancy defect may enhance the adsorption of the visible light in Ln-doped TiO2 system.  相似文献   

7.
The LaIn(3-x)Sn(x) alloy system is composed of superconducting Pauli paramagnets. For LaIn3 the superconducting critical temperature T(c) is approximately 0.7 K and it shows an oscillatory dependence as a function of Sn substitution, presenting its highest value T(c) ≈ 6.4 K for the LaSn3 end member. The superconducting state of these materials was characterized as being of the conventional type. We report our results for Gd3+ electron spin resonance measurements in the LaIn(3-x)Sn(x) compounds as a function of x. We show that the effective exchange interaction parameter J(fs) between the Gd3+ 4f local moment and the s-like conduction electrons is almost unchanged by Sn substitution and observe microscopically that LaSn3 is a conventional superconductor.  相似文献   

8.
The magnetic linear dichroism of the gadolinium 4f core level is studied in a time-resolved photoemission experiment employing laser pump- and synchrotron-radiation probe pulses. Upon optical excitation of the 5d6s valence electrons with femtosecond laser pulses, the magnetic order in the 4f spin system is reduced. Remarkably, the linear dichroism remains at 80% of the equilibrium contrast while the lattice temperature reaches the Curie temperature due to electron-phonon scattering. Contrasting itinerant ferromagnets, this shows that equilibration between the lattice and spin subsystems takes in Gd about 80 ps and is established in parallel with heat diffusion.  相似文献   

9.
Results are presented of an extensive theoretical study of the origin of high field superconductivity and/or magnetism in a number of Chevrel phase ternary compounds, MMo6X8 (with M=Sn, Eu, Gd and X=S and/or Se) based on self-consistent linear muffin-tin orbital (LMTO) energy band calculations using the local density approach (Hedin et al. exchange correlation) for the paramagnetic structures and local spin density formalism (Gunnarsson and Lundqvist) for the ferromagnetic structures. All electrons and all 15 atoms/cell are included with the core electrons (including the 4f's) recalculated in each iteration in a fully relativistic representation and the conduction electrons treated semirelativistically (all relativistic terms except spin-orbit). Superconductivity is found to be due to the high Mo d-band density of states (DOS) at EF resulting from the unusual large charge transfer of Mo electrons to the chalcogen sites. There is also a large charge transfer from the metal site to the cluster (≈2 electrons in Sn and Eu) giving essentially no occupied conduction bands, for example, at the Eu site and a divalent ion isomer shift in very good agreement with the experiments of Dunlap et al. The conduction-electron DOS at the Eu site is found to be reduced by an order of magnitude from its metallic state value - in close agreement with their spin - lattice relaxation rate measurements. This low conduction-electron DOS yields very weak coupling of the 4f electrons to the conduction electrons and only a very weak Ruderman-Kittel-Kasuya-Yosida magnetic interaction showing why all the Chevrel rare-earth compounds - except Ce and Eu - are superconducting despite their having large local magnetic moments. The unusually high upper critical fields, Hc2, in these materials is found to be due to the unusully flat energy bands near FF. The ferromagnetic (spin polarized) results for the Eu- and Gd-compounds show a net small but positive magnetic moment on the metal site and a small but negative induced spin magnetic moment on the Mo site in the Eu compound. Fermi-contact contributions to the hyperfine field are calculated and found to be in good agreement with the Eu Mössbauer results and the negative NMR Knights shift results of Fradin et al. These results demonstrate theoretically for the first time the validity of the Fischer et al. and Fradin et al. conclusion that the Jaccarino-Peter mechanism is responsible for the large increase in the Hc2 when large concentrations of Eu magnetic impurities are substituted in SnMo6S8. Finally, calculated Stoner factors for the paramegnetic phase and spin magnetization densities for the ferromagnetic phase are used to discuss qualitatively the origin of the different behavior observed for GdMo6S8 and EuMo6S8.  相似文献   

10.
The correlation of a magnetic impurity spin with the spin density of the conduction electrons in a dilute magnetic alloy is calculated non-perturbationally on the basis of the Nagaoka theory. It is shown that there are anomalies due to the Kondo effect in the long range behaviour of this correlation which contradicts the bound state interpretation of the Kondo effect. The most interesting detail is the appearance of a non-oscillating contribution to the correlation.  相似文献   

11.
The spin and charge correlations induced in the conduction electron sea by the presence of a spin-1=2 magnetic impurity are investigated for one-dimensional electrons. For correlated conduction electrons, the RKKY interaction between magnetic impurities exhibits only a slow algebraic decay with distance. Increasing the exchange coupling between conduction electrons and magnetic impurity leads to a competition between the RKKY interaction and the Kondo effect. For a two-impurity model, we study the influence of the electronic correlations on this competition. Furthermore, the Kondo screening cloud and the local spin susceptibility far away from a magnetic impurity are discussed.  相似文献   

12.
本文采用基于第一性原理的密度泛函理论超软雁势平面波方法,对铁磁性半导体高锰硅化合物Mn_4Si_7进行了理论计算.结果表明块体Mn_4Si_7是准直接带隙半导体材料,其价带主要是由Mn的3d轨道电子构成,导带主要是由Mn的3d及Si的3p轨道电子构成.相同自旋轨道下,自旋向下态的电子更容易占据较高的能级.而自旋向上态的电子对Mn_4Si_7的禁带宽度起主导作用. Mn_4Si_7的费米能级附近各轨道未被电子占满,且自旋向上态与自旋向下态电子的不对称分布使其具有了磁性.为Mn_4Si_7磁学特性提供主要贡献的是Mn的3d轨道电子,而Si的3p和3s轨道电子提供了一个小的贡献.  相似文献   

13.
We develop a theoretical basis for understanding the spin relaxation processes in Kondo lattice systems with heavy fermions as experimentally observed by electron spin resonance (ESR). The Kondo effect leads to a common energy scale that regulates a logarithmic divergence of different spin kinetic coefficients and supports a collective spin motion of the Kondo ions with conduction electrons. We find that the relaxation rate of a collective spin mode is greatly reduced due to a mutual cancellation of all the divergent contributions even in the case of the strongly anisotropic Kondo interaction. The contribution to the ESR linewidth caused by the local magnetic field distribution is subject to motional narrowing supported by ferromagnetic correlations. The developed theoretical model successfully explains the ESR data of YbRh2Si2 in terms of their dependence on temperature and magnetic field.  相似文献   

14.
The spin configurations of two dimensional ferromagnetic/antiferromagnetic system were investigated using model calculations and Monte-Carlo simulation methods. The lowest energy state was obtained under various coupling conditions to investigate the role of interfacial interaction on anisotropy. We found that the total ferromagnetic layer anisotropy is contributed not only from its own crystalline anisotropy but also from the antiferromagnetic layer spin flop effect. The overall ferromagnetic layer effective anisotropy is calculated as a function of the exchange energy of antiferromagnetic layer and the interfacial interaction energy. If the effective anisotropy from the spin flop effect is comparable with the crystalline anisotropy, the asymmetric spin configuration is generated. In this configuration, the magnetization direction of the ferromagnetic layer is neither perpendicular nor parallel to the antiferromagnetic spin direction. Temperature effect on the perpendicular-to-collinear coupling transition was also investigated using Monte-Carlo simulation, and the relationship between the effective anisotropy and the temperature was obtained.  相似文献   

15.
The scattering of spin waves and the thermal resistance due to this scattering are calculated for polycrystalline magnetic thin films with a small overall uniaxial anisotropy. The scattering is caused by the random orientation of crystallites, and also by the magnetization ripple, which is likewise produced by this random orientation. The wavelength spectra of the ripple and of the spin waves at low energy are essentially influenced by the magnetostatic interaction, which is taken into account within Harte's linearized thin film approximation, and for comparison also within Hoffmann's approximation. Due to the anisotropy of the spectra, the contribution of the spin waves to the thermal resistance of permalloy films should be highly anisotropic at temperatures of 2 K and below.  相似文献   

16.
Magnetization of anisotropic quantum dots in the presence of the Rashba spin–orbit interaction has been studied for three and four interacting electrons in the dot for non-zero values of the applied magnetic field. We observe unique behaviors of magnetization that are direct reflections of the anisotropy and the spin–orbit interaction parameters independently or concurrently. In particular, there are saw-tooth structures in the magnetic field dependence of the magnetization, as caused by the electron–electron interaction, that are strongly modified in the presence of large anisotropy and high strength of the spin–orbit interactions. We also report the temperature dependence of magnetization that indicates the temperature beyond which these structures due to the interactions disappear. Additionally, we found the emergence of a weak sawtooth structure in magnetization for three electrons in the high anisotropy and large spin–orbit interaction limit that was explained as a result of merging of two low-energy curves when the level spacings evolve with increasing values of the anisotropy and the spin–orbit interaction strength.  相似文献   

17.
Spin interactions are studied between conduction band electrons in GaAs heterostructures and local moments, specifically the spins of constituent lattice nuclei and of partially filled electronic shells of impurity atoms. Nuclear spin polarizations are addressed through the contact hyperfine interaction resulting in the development of a method for high-field optically detected nuclear magnetic resonance sensitive to 108 nuclei. This interaction is then used to generate nuclear spin polarization profiles within a single parabolic quantum well; the position of these nanometer-scale sheets of polarized nuclei can be shifted along the growth direction using an externally applied electric field. In order to directly investigate ion spin dynamics, doped GaMnAs quantum wells are fabricated in the regime of very low Mn concentrations. Measurements of coherent electron spin dynamics show an antiferromagnetic exchange between s-like conduction band electrons and electrons localized in the d-shell of the Mn impurities, which varies as a function of well width.  相似文献   

18.
A new Hamiltonian for the interaction of magnetic impurity spin with the conduction electrons is proposed. It is found that the conduction electrons may be condensed into the spin levels. For single impurity, the exact eigenstates are found. In the case of many impurities, virtual electron exchange is predicted for the first time. A single fermion and a single phonon operator interaction leads to hybrid interaction between bands of electrons along with some interesting effects.  相似文献   

19.
The formation of layer-heterogeneous periodic magnetic states in metallic systems is explained in terms of the dependence of the energy of itinerant electrons on the magnetic ordering of localized spins. The interaction of the local magnetic moments with conduction electrons with a certain spin projection is described by a set of spin-dependent δ-function potentials. A matrix method is developed permitting one to calculate the energy spectrum and the density of states of itinerant electrons in the presence of a layered magnetic heterogeneity. This method is used to explain oscillations of the interlayer exchange interaction in metallic magnetic superlattices and the stabilization of spin-density wave structures in transition metals and alloys.  相似文献   

20.
薛智琴  郭永权 《中国物理 B》2016,25(6):63101-063101
The magnetisms of RCo_5(R = rare earth) intermetallics are systematically studied with the empirical electron theory of solids and molecules(EET).The theoretical moments and Curie temperatures agree well with experimental ones.The calculated results show strong correlations between the valence electronic structure and the magnetic properties in RCo_5 intermetallic compounds.The moments of RCo_5 intermetallics originate mainly from the 3d electrons of Co atoms and 4f electrons of rare earth,and the s electrons also affect the magnetic moments by the hybridization of d and s electrons.It is found that moment of Co atom at 2c site is higher than that at 3g site due to the fact that the bonding effect between R and Co is associated with an electron transformation from 3d electrons into covalence electrons.In the heavy rare-earth-based RCo_5 intermetallics,the contribution to magnetic moment originates from the 3d and 4f electrons.The covalence electrons and lattice electrons also affect the Curie temperature,which is proportional to the average moment along the various bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号