首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report first-principles total-energy calculations that provide energetics and electronic structures of adsorbed carbon nanotubes (CNTs) on stepped Si(001) surfaces. We find that adsorption energies strongly depend on the directions of CNTs, and that there are several metastable adsorption sites both on terraces and near step edges. We also find that the electronic structure of adsorbed metallic CNTs becomes semiconducting or remains metallic, depending on the adsorption site. Charge redistribution upon adsorption is prominent mainly at the CNT-surface interface.  相似文献   

2.
We report first-principles calculations of conductance of carbon nanotubes between metallic electrodes. The electronic states are calculated using a numerical atomic orbital basis set in the framework of the density functional theory, and the conductance is calculated using the Green's function method. We show transmission spectra of carbon nanotubes connected to electrodes and reveal the contact effect of electrodes on the transport properties of nanotubes.  相似文献   

3.
Through first-principles molecular dynamics we study the low-temperature oxidation of the Si(001) surface from the initial adsorption of an O2 molecule to the formation of a native oxide layer. Peculiar features of the oxidation process are the early, spontaneous formation of Si4+ species, and the enhanced reactivity of the surface while the reactions proceed, until saturation is reached at a coverage of 1.5 ML. The channels for barrierless oxidation are found to be widened in the presence of both boron and phosphorous impurities.  相似文献   

4.
利用第一原理理论研究了金属In在Si(001)表面吸附的原子结构.结果表明,In原子的吸附不破坏衬底Si的二聚体化学键.在低覆盖率时,In原子在Si(001)衬底上形成有序量子线,取向沿衬底Si的二聚体化学键方向.计算结果显示相邻In线之间不存在排斥作用.  相似文献   

5.
We report the results of our first-principles study based on density functional theory on the interaction of alkanethiols with both defected and defect-free single-walled carbon nanotube (SWCNT). The adsorption energies are calculated for various configurations such as alkanethiol molecule approaching to defect sites heptagon, hexagon, and pentagon in defective tube, and another case where the alkanethiol approaching to hexagon in defect-free nanotube. The calculated results showed that alkanethiols are rather strongly bound to the outer surface of both the defected and defect-free carbon nanotubes with the binding energy of about −50.58 kcal/mol, consistent with the experimental result. We also find that alkanethiols prefer to be adsorbed on the hexagon ring site of defect-free nanotube. Furthermore, the effect of alkanethiols chain length on the adsorption of alkanethiols on carbon nanotubes has been investigated, and the obtained results reveal that the longer alkanethiols bind rather more strongly to the nanotube surface.  相似文献   

6.
Using the pseudopotential method and the local density approximation of density functional theory we have investigated the stability, atomic geometry, and electronic states for low-coverage Ca adsorbates on the Si(001) surface within the (2 × n) reconstructions with n = 2, 3, 4, 5. Our total energy calculations suggest that the (2 × 4) phase represents the most energetically stable structure with the Ca coverage of 0.375 ML. Within this structural model, each Ca atom is found to form a bridge with the inner two Si–Si dimers. The inner Si–Si dimers become elongated and symmetric (untilted). The band structure calculation indicates that the system is semiconducting with a small band gap. Significant amount of charge transfer from the Ca atoms to neighbouring Si atoms has been concluded by analysing the electronic charge density and simulation of scanning tunnelling microscopy images. The highest occupied and lowest unoccupied electronic states are found to arise from the inner and outer Si–Si dimer components, respectively.  相似文献   

7.
《Surface science》1995,341(3):L1091-L1095
We present a first-principles molecular dynamics study of acetylene adsorption on the Si(001) surface. Acetylene molecules are di-σ bonded to the first layer Si dimers with the adsorption energy of 64.8 kcal/mol. It is elucidated that the CC bond is essentially double bond and the Si dimer bonds are not cleaved. The normal mode analyses well reproduce the experimental results, giving a strong support to our results.  相似文献   

8.
Density-functional theory calculations are employed to investigate both the epitaxial growth and the magnetic properties of thin Mn and MnSi films on Si(001). For single Mn adatoms, we find a preference for the second-layer interstitial site. While a monolayer Mn film is energetically unfavorable, a capping-Si layer significantly enhances the thermodynamic stability and induces a change from antiferromagnetic to ferromagnetic order. For higher Mn coverage, a sandwiched Si-Mn thin film (with CsCl-like crystal structure) is found to be the most stable epitaxial structure. We attribute the strong ferromagnetic intralayer coupling in these films to Mn 3d-Si 3s3p exchange.  相似文献   

9.
The dissociative adsorption of H2 on the Si(001) surface is theoretically investigated for several reaction pathways using quantum Monte Carlo methods. Our reaction energies and barriers are at large variance with those obtained with commonly used approximate exchange-correlation density functionals. Our results for adsorption support recent experimental findings, while, for desorption, the calculations give barriers in excess of the presently accepted experimental value, pinpointing the role of coverage effects and desorption from steps.  相似文献   

10.
We carry out first-principles calculations to explore the potential energy profiles of Li confined inside single-walled carbon nanotubes (SWNTs) and the subsequent condensation processes. We found that Li has high mobility around tube axis with the energy barrier less than 47 meV, whereas the diffusion barrier along radial direction is as higher as 380 meV. This characterizes the condensation of Li atoms when placed randomly into SWNTs, resulting in nanowires with single or multi-shelled morphologies depending on the diameter of SWNTs. The charge transfer from Li nanowires to SWNTs is significant, indicating stronger couplings between them.  相似文献   

11.
马健新  贾瑜  梁二军  王晓春  王飞  胡行 《物理学报》2003,52(12):3155-3161
用第一性原理的密度泛函理论计算了PbTe(001)表面的几何结构和电子结构.计算结果表明:PbTe(001)表面不发生重构,但表面几层原子表现出明显的振荡弛豫现象,其中第一、第二层间距减小4.5%,第二、第三层间距增加2.0%,并且表面层原子出现褶皱.表面带隙在X 点,带隙变宽,在基本带隙中不引入新的表面态,而导带底和价带顶附近等多处出现新的表 面共振态;弛豫后费米面处态密度很低,所以表面结构很稳定. 关键词: 密度泛函理论 表面几何结构 表面电子结构 PbTe  相似文献   

12.
0.9 Ge0.1(001)/Si(001) films with SH photon energies 3.1<2hν<3.5 eV near the bulk E1 critical point of Si(001) or Si0.9Ge0.1(001). Ge was deposited on Si(001) by using atomic layer epitaxy cycles with GeH4 or Ge2H6 deposition at 410 K followed by hydrogen desorption. As Ge coverage increased from 0 to 2 monolayers the SH signal increased uniformly by a factor of seven with no detectable shift in the silicon E1 resonant peak position. SH signals from Si0.9Ge0.1(001)/Si(001) were also stronger than those from intrinsic Si(001). Hydrogen termination of the Si0.9Ge0.1(001) and Ge/Si(001) surfaces strongly quenched the SH signals, which is similar to the reported trend on H/Si(001). We attribute the stronger signals from Ge-containingsurfaces to the stronger SH polarizability of asymmetric Ge-Si and Ge-Ge dimers compared to Si-Si dimers. Hydrogen termination symmetrizes all dimers, thus quenching the SH polarizability of all of the surfaces investigated. Received: 13 October 1998 / Revised version: 18 January 1999  相似文献   

13.
S. Kono  T. Goto  Y. Ogura  T. Abukawa 《Surface science》1999,420(2-3):200-212
The possibility of surface electromigration (SE) of metals of In, Ga, Sb and Ag on a very flat Si(001)2×1 substrate (single domain 2×1) was examined by SEM, μ-RHEED and μ-AES under UHV conditions. It was found that Ga, Sb and Ag show no SE on Si(001) surface even at DC annealing temperatures for the desorption of these metals. For In on Si(001), a very fast SE (8000 μm/min) towards the cathode side was found that suddenly sets in at 450°C DC annealing, which was related to a surface phase transition. μ-RHEED and μ-AES observation showed that the SE is related to an ordered 4×3-In phase together with two-dimensional In gas phase over the 4×3-In phase and an In-disordered phase at the front end of SE. Single domain 4×3-In phases were found to occur under sequences of In deposition and DC annealing which involve the In SE on Si(001).  相似文献   

14.
The C amount and the structure of the Si(001)-c(4 x 4) surface is studied using scanning tunneling microscopy (STM) and ab initio calculations. The c(4 x 4) phase is found to contain 1/8 monolayer C (1 C atom in each primitive unit cell). From the C amount and the symmetry of high-resolution STM images, it is inferred that the C atoms substitute the fourth-layer site below the dimer row. We construct a structure model relying on ab initio energetics and STM simulations. Each C atom induces an on-site dimer vacancy and two adjacent rotated dimers on the same dimer row. The c(4 x 4) phase constitutes the subsurface Si(0.875)C(0.125) delta layer with two-dimensionally ordered C atoms.  相似文献   

15.
We have performed density functional theory calculations to understand the initial growth of graphene by studying the adsorption of carbon atoms on the oxide substrates such as magnesium oxide. For adsorption behaviors of carbon atoms on the MgO(100) surface, their adsorption geometries and binding energies are calculated. The binding of a carbon atom is the most stable at the on-top oxygen site on MgO(100). Such strong C–O binding is analyzed by examining the projected density of states. Then, we also increase the number of carbon atoms on MgO(100) to investigate their adsorption behaviors. Due to strong binding between carbon atoms, adsorbed carbon atoms form chain-like or graphene-like structures on the surface. Combined with relatively strong C–O binding, this result may explain the graphene growth on MgO(100) observed in available experiments.  相似文献   

16.
A phase transition between c(4x2) and 2x1 structures on the Si(001) surface has been observed at 200 K by low-energy electron diffraction. This transition is a second order order-disorder transition of the asymmetric dimer configuration. The streak pattern remains up to well above the transition temperature. The temperature dependence of the width and the length of the streak can be described in terms of the effects of a strong anisotropic coupling between adjacent asymmetric dimers.  相似文献   

17.
18.
杨冲  杨春 《物理学报》2009,58(8):5362-5369
在周期性边界条件下的k空间中,采用基于密度泛函理论的第一性原理广义梯度近似方法,对建立的规则对称型结构(A)、周期性非对称型结构(B)、周期性非对称型结构(C)、不规则型结构(D)四种可能的Si(001)表面硅氧团簇的结构模型进行了优化计算.结果表明优化后的表面结构呈无定形状,并且优化后的B,C,D三种模型的表面结构具有类似SiO2的四面体结构的几何特征.此外,通过电子局域函数图以及Mulliken布居分析发现硅氧团簇中的Si—O键既有明显的离子键成分,也有一定的共价键成分. 关键词: Si(001)表面 硅氧团簇 密度泛函理论 第一性原理  相似文献   

19.
We report ab initio calculations of the quasiparticle band structure and the optical excitation spectrum of bulk MgO, the MgO(001) surface, and CO molecules adsorbed on MgO(001). Many-body exchange and correlation effects are included within the GW approximation of the electron self-energy operator and the corresponding electron–hole interaction. The excited electron–hole states are obtained from the Bethe–Salpeter equation. At the clean MgO(001) surface exciton states are found with binding energies that are significantly stronger than in the bulk. The exciton spectrum of the adsorbate system CO:MgO is dominated by charge-transfer excitons, which couple strongly to the molecular excitations of CO. PACS 73.20.At; 73.20.Hb; 34.70.+e  相似文献   

20.
Yanhua Guo 《Physics letters. A》2008,372(15):2688-2691
Based on first-principles spin-density functional calculations, we investigate the electronic and magnetic properties of Mn-doped GaN nanotubes in which two of Ga atoms are substituted by Mn atoms. Similar to the case of Mn in bulk GaN, our calculations show that Mn atoms also act as an acceptor and all of the ground states for the Mn-doped GaNNTs are ferromagnetic. Moreover, the ferromagnetism is isotropic and independent of the chirality and diameter of the nanotubes. It is found that the most favorable configuration is the first-nearest neighbor Mn model, which is mainly mediated by both the hole-hole interaction and the dipole-dipole interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号