首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
In this paper the fundamental role of independent balance laws of material forces acting on dislocations and microdefects is shown. They enable a thermodynamically consistent formulation of dissipative deformation processes of continua with dislocation motion and defect evolution in the material space on meso- and microlevel.The balance laws of material forces together with the classical balance laws of physical forces and couples, first and second laws of thermodynamics for physical and material space and general constitutive equations are the basis to develop a thermodynamically consistent framework of nonlocal finite elastoplasticity and brittle and ductile damage.It is shown that a weakly-nonlocal formulation of the balance laws of material forces leads to gradient theories, where local theories are obtained, if all gradient contributions are assumed to be small. In this case the local balance laws of material forces together with the constitutive equations represent evolution laws of the material forces. In the classical approach of internal variables they are assumed from the outset with the result that there is a large number of different propositions in the literature.The well-known splitting test of a circular cylinder of concrete is simulated numerically, where the process of deformation in the physical space and defect and plastic evolution in the material space is represented.  相似文献   

2.
The aim of this paper is to develop a thermodynamically consistent micromechanical concept for the damage analysis of viscoelastic and quasi-brittle materials. As kinematical damage variables a set of scalar-, vector-, and tensor-valued functions is chosen to describe isotropic and anisotropic damage. Since the process of material degradation is governed by physical mechanisms on levels with different length scale, the macro- and mesolevel, where on the mesolevel microdefects evolve due to microforces, we formulate in this paper the dynamical balance laws for macro- and microforces and the first and second law of thermodynamics for macro- and mesolevel.Assuming a general form of the constitutive equations for thermo-viscoelastic and quasi-brittle materials, it is shown that according to the restrictions imposed by the Clausius–Duhem inequality macro- and microforces consist of two parts, a non-dissipative and a dissipative part, where on the mesolevel the latter can be regarded as driving forces on moving microdefects. It is shown that the non-dissipative forces can be derived from a free energy potential and the dissipative forces from a dissipation pseudo-potential, if its existence can be assured.The micromechanical damage theory presented in this paper can be considered as a framework which enables the formulation of various weakly nonlocal and gradient, respectively, damage models. This is outlined in detail for isotropic and anisotropic damage.  相似文献   

3.
Configurational forces and couples acting on a dynamically evolving fracture process region as well as their balance are studied with special emphasis to microstructure and dissipation. To be able to investigate fracture process regions preceding cracks of mode I, II and III we choose as underlying continuum model the polar and micropolar, respectively, continuum with dislocation motion on the microlevel. As point of departure balance of macroforces, balance of couples and balance of microforces acting on dislocations are postulated. Taking into account results of the second law of thermodynamics the stress power principle for dissipative processes is derived.Applying this principle to a fracture process region evolving dynamically in the reference configuration with variable rotational and crystallographic structure, the configurational forces and couples are derived generalizing the well-known Eshelby tensor. It is shown that the balance law of configurational forces and couples reflects the structure of the postulated balance laws on macro- and microlevel: the balance law of configurational forces and configurational couples are coupled by field variable, while the balance laws of configurational macro- and microforces are coupled only by the form of the free energy. They can be decoupled by corresponding constitutive assumption.Finally, it is shown that the second law of thermodynamics leads to the result that the generalized Eshelby tensor for micropolar continua with dislocation motion consists of a non-dissipative part, derivable from free and kinetic energy, and a dissipative part, derivable from a dissipation pseudo-potential.  相似文献   

4.
利用损伤函数概念,建立了一个普遍形式的局部断裂准则。该准则考虑了局掊应力,应变和损伤历史对断裂的影响,根据损伤力学理选取了一个新的连续损伤函数,从而导出一个新的连续损伤断裂准则。新的临界断裂参数WDC,具有明显的物理意义,且易通过试验测得,是一个不依赖于应力状态的材料九。文中还从细观力学理论和有关的试验资料出发,选取了相应的损伤函数,再现了前人的细观力学准则和经验准则。  相似文献   

5.
延性材料动态损伤演化模型研究   总被引:1,自引:0,他引:1  
从微损伤系统的统计描述出发,应用Mori-Tanaka理论的物理思想,考虑了微孔洞间的相互作用,建立了延性材料动态损伤的统计演化模型。结果能够描述材料在外载作用下的损伤弱化效应。还分析了材料变形中的两种不同的耗散机制,考虑了含损伤的本构关系。将上述模型用于几种材料的层裂过程数值模拟,并与实验结果作了初步比较。  相似文献   

6.
A new ductile fracture theory and its applications   总被引:1,自引:0,他引:1  
This investigation discusses further the extent to which a new damage theory recently proposed by the author can serve as a unified theory to characterize various ductile failure problems. A general damage integral and corresponding criterion for ductile fracture are presented. A new parameter for ductile fracture is emphasized, which is experimentally verified as a material constant independent of stress state, has clear physical meaning, and can easily be determined. The applicability of this theory to evaluation of the ductility of welds and engineering materials under various conditions is examined. Also, it is used to predict the effect of residual stress on failure of welds, to predict sheetforming limits, and to correlate the variability of elasto-plastic fracture toughness valuesJ 1c and δ c with different specimen geometries. A new constraint correction method is proposed, and constraint corrected new toughness parameterJ dc and δ dc are recommended. Experiments have shown that the toughness variation with different specimen geometries can effectively be removed by use of the method. The general applicability of the theory to characterization of various ductile failures provides a new design tool for engineering components or structures.  相似文献   

7.
Material electromagnetic fields and material forces   总被引:2,自引:0,他引:2  
Electromagnetic fields address configurational forces in a natural way through an energy–stress tensor, which reduces to the Maxwell tensor in the simplest case. This tensor is related to physical forces and to the Cauchy traction in a continuum. Material forces, as opposed to physical forces, are of a different nature as they act upon a site of a continuum where the possible material inhomogeneity is located. A material energy–stress tensor, which is reminiscent of the Maxwell stress, is associated with these forces. Through appropriate balance laws, a material momentum is also associated with material forces. The material momentum is of particular interest in electromagnetic materials as it is intimately related to the pseudomomentum of light [Peierls in Highlights of Condensed Matter Physics, pp. 237–255 (1985) and in Surprises in Theoretical Physics, pp. 91–99 (1979); Thellung in Ann. Phys. 127, 289–301 (1980)]. The balance law for the material momentum can be derived either from the classical physical laws or independently of them. This derivation, which is based on the material electromagnetic potentials and the related gauge transformations, is discussed and commented on for an electromagnetic body.  相似文献   

8.
Conditions for discontinuous bifurcation in limit states of selective non-local thermodynamically consistent gradient theory for quasi-brittle materials like concrete are evaluated by means of both geometrical and analytical procedures. This constitutive formulation includes two internal lengths, one related to the strain gradient field that considers the degradation of the continuum in the vicinity of the considered material point. The other characteristic length takes into account the material degradation in the form of energy release in the cracks during failure process evolution.The variation from ductile to brittle failure in quasi-brittle materials is accomplished by means of the pressure dependent formulation of both characteristic lengths as described by Vrech and Etse (2009).In this paper the formulation of the localization ellipse for constitutive theories based on gradient plasticity and fracture energy plasticity is proposed as well as the explicit solutions for brittle failure conditions in the form of discontinuous bifurcation. The geometrical, analytical and numerical analysis of discontinuous bifurcation condition in this paper are comparatively evaluated in different stress states and loading conditions.The included results illustrate the capabilities of the thermodynamically consistent selective non-local gradient constitutive theory to reproduce the transition from ductile to brittle and localized failure modes in the low confinement regime of concrete and quasi-brittle materials.  相似文献   

9.
A material model for concrete is proposed here within the framework of a thermodynamically consistent elasto-plasticity–damage theory. Two anisotropic damage tensors and two damage criteria are adopted to describe the distinctive degradation of the mechanical properties of concrete under tensile and compressive loadings. The total stress tensor is decomposed into tensile and compressive components in order to accommodate the need for the above mentioned damage tensors. The plasticity yield criterion presented in this work accounts for the spectral decomposition of the stress tensor and allows multiple hardening rules to be used. This plastic yield criterion is used simultaneously with the damage criteria to simulate the physical behavior of concrete. Non-associative flow rule for the plastic strains is used to account for the dilatancy of concrete as a frictional material. The thermodynamic Helmholtz free energy concept is used to consistently derive dissipation potentials for damage and plasticity and to allow evolution laws for different hardening parameters. The evolution of the two damage tensors is accounted for through the use of fracture-energy-based continuum damage mechanics. An expression is derived for the damage–elasto-plastic tangent operator. The theoretical framework of the model is described here while the implementation of this model will be discussed in a subsequent paper.  相似文献   

10.
基于微态方法的耦合韧性损伤的弹塑性本构模型   总被引:1,自引:1,他引:0  
基于广义连续介质力学提出了一个热力学一致性的耦合微态韧性损伤的弹塑性本构模型。该模型遵循Forest的微态方法,在有限变形中提出引入额外的微态损伤因子及其一阶梯度以考虑材料的内部特征尺度。通过广义虚功原理得到了微态损伤的补充控制方程,对亥姆霍兹自由能进行扩展,得到了新的包含微态损伤变量的损伤能量释放率,在微态损伤的正则化作用下,采用隐式迭代更新局部损伤和应力等状态变量。基于Galerkin加权余量法,推导了以传统位移和微态损伤为基本未知量的有限元列式。利用该数值模型,对DP1000材料的单向拉伸实验和十字形零件的冲压实验进行了应变局部化与材料断裂的有限元分析。结果表明,该微态弹塑性损伤模型可以得到一致的有限元模拟响应曲线并收敛到实验曲线,从而避免发生网格依赖性问题。  相似文献   

11.
From the micro- and macroscopic points of view, the damage evolution of weld-simulated heat affected zone (HAZ) is studied. In the framework of continuum damage mechanics (CDM), the ductile and low cycle fatigue (LCF) damage evolution laws of HAZ have been examined. Two alternative laws of damage are proposed in this paper, which may meet the need for describing damage evolution of ductile rupture and LCF fracture, respectively.  相似文献   

12.
The paper discusses the effect of stress triaxiality on the onset and evolution of damage in ductile metals. A series of tests including shear tests and experiments on smooth and pre-notched tension specimens was carried out for a wide range of stress triaxialities. The underlying continuum damage model is based on kinematic definition of damage tensors. The modular structure of the approach is accomplished by the decomposition of strain rates into elastic, plastic and damage parts. Free energy functions with respect to fictitious undamaged configurations as well as damaged ones are introduced separately leading to elastic material laws which are affected by increasing damage. In addition, a macroscopic yield condition and a flow rule are used to adequately describe the plastic behavior. Numerical simulations of the experiments are performed and good correlation of tests and numerical results is achieved. Based on experimental and numerical data the damage criterion formulated in stress space is quantified. Different branches of this function are taken into account corresponding to different damage modes depending on stress triaxiality and Lode parameter. In addition, identification of material parameters is discussed in detail.  相似文献   

13.
在Rice的正则结构框架下,推导出基于共轭力的各向异性损伤演化律。其中损伤变量采用二阶裂隙张量,它是固体内微裂纹的一个宏观测度。推导过程不涉及自由能的具体形式,主要结果包括损伤势函数及演化方程的解析表达式。在唯象的损伤力学模型里,损伤演化方程经常以唯象方程的形式出现。研究了唯象方程成立的条件及损伤特征张量的解析表达式。引入了广义裂隙张量及脆性指数的概念,并介绍了它们的作用和意义。  相似文献   

14.
In this work, analytical and numerical solutions of the condition for discontinuous bifurcation of thermodynamically consistent gradient-based poroplastic materials are obtained and evaluated. The main aim is the analysis of the potentials for localized failure modes in the form of discontinuous bifurcation in partially saturated gradient-based poroplastic materials as well as the dependence of these potentials on the current hydraulic and stress conditions. Also the main differences with the localization conditions of the related local theory for poroplastic materials are evaluated to perfectly understand the regularization capabilities of the non-local gradient-based one. Firstly, the condition for discontinuous bifurcation is formulated from wave propagation analyses in poroplastic media. The material formulation employed in this work for the spectral properties evaluation of the discontinuous bifurcation condition is the thermodynamically consistent, gradient-based modified Cam Clay model for partially saturated porous media previously proposed by the authors. The main and novel feature of this constitutive theory is the inclusion of a gradient internal length of the porous phase which, together with the characteristic length of the solid skeleton, comprehensively defined the non-local characteristics of the represented porous material. After presenting the fundamental equations of the thermodynamically consistent gradient based poroplastic constitutive model, the analytical expressions of the critical hardening/softening modulus for discontinuous bifurcation under both drained and undrained conditions are obtained. As a particular case, the related local constitutive model is also evaluated from the discontinuous bifurcation condition stand point. Then, the localization analysis of the thermodynamically consistent non-local and local poroplastic Cam Clay theories is performed. The results demonstrate, on the one hand and related to the local poroplastic material, the decisive role of the pore pressure and of the volumetric non-associativity degree on the location of the transition point between ductile and brittle failure regimes in the stress space. On the other hand, the results demonstrate as well the regularization capabilities of the non-local gradient-based poroplastic theory, with exception of a particular stress condition which is also evaluated in this work. Finally, it is also shown that, due to dependence of the characteristic lengths for the pore and skeleton phases on the hydraulic and stress conditions, the non-local theory is able to reproduce the strong reduction of failure diffusion that takes place under both, low confinement and low pore pressure of partially saturated porous materials, without loosing, however, the ellipticity of the related differential equations.  相似文献   

15.
The growth of biological tissues is here described at the continuum scale of tissue elements. Relying on a previous work in Ganghoffer and Haussy (2005), the rephrasing of the balance laws for tissue elements under growth in terms of suitable Eshelby tensors is done in the present contribution, considering successively volumetric and surface growth. Balance laws for volumetric growth are written in both compatible and incompatible configurations, highlighting the material forces for growth associated to Eshelby tensors. Evolution laws for growth are written from the expression of the local dissipation in terms of a relation linking the growth velocity gradient to a growth-like Eshelby stress, in the spirit of configurational mechanics. Surface growth is next envisaged in terms of phenomena taking place in a varying reference configuration, relying on the setting up of a surface potential depending upon the surface transformation gradient and to the normal to the growing surface. The balance laws resulting from the stationnarity of the potential energy are expressed, involving surface Eshelby tensors associated to growth. Simulations of surface growth in both cases of fixed and moving generating surfaces evidence the interplay between diffusion of nutrients and the mechanical driving forces for growth.  相似文献   

16.
材料的微结构损伤与韧性断裂   总被引:1,自引:0,他引:1  
Ⅰ.前言50年代起至60年代,国际上开展了材料宏观力学性能的大量研究,提出了应力强度因子K和J积分,确定了断裂韧性参数的测定方法,创立了断裂力学学科并制定了规范,对材料的断裂、疲劳性能的预测和安全设计做出了很大贡献。进入70年代后开始注意到现有技术远远不能认识和控制各类裂纹的起因和发展。例如,K和J不能解决裂纹的稳态扩展、复   相似文献   

17.
Surface growth is presently described as the motion of a moving interface of vanishing thickness, physically representing the generating cells, separating a zone not yet affected by growth from a domain in which growth has occurred. The jump conditions of density, velocity, momentum, energy, and entropy over the moving front are expressed from the general balance laws of open systems in both physical and material format. The writing of the jump of the internal entropy production in material format allows the identification of a driving force for surface growth, thermodynamically conjugated to the material velocity of the moving front.  相似文献   

18.
The paper presents a constitutive framework for solids with dissipative micro-structures based on compact variational statements. It develops incremental minimization and saddle point principles for a class of gradient-type dissipative materials which incorporate micro-structural fields (micro-displacements, order parameters, or generalized internal variables), whose gradients enter the energy storage and dissipation functions. In contrast to classical local continuum approaches to inelastic solids based on locally evolving internal variables, these global micro-structural fields are governed by additional balance equations including micro-structural boundary conditions. They describe changes of the substructure of the material which evolve relatively to the material as a whole. Typical examples are theories of phase field evolution, gradient damage, or strain gradient plasticity. Such models incorporate non-local effects based on length scales, which reflect properties of the material micro-structure. We outline a unified framework for the broad class of first-order gradient-type standard dissipative solids. Particular emphasis is put on alternative multi-field representations, where both the microstructural variable itself as well as its dual driving force are present. These three-field settings are suitable for models with threshold- or yield-functions formulated in the space of the driving forces. It is shown that the coupled macro- and micro-balances follow in a natural way as the Euler equations of minimization and saddle point principles, which are based on properly defined incremental potentials. These multi-field potential functionals are outlined in both a continuous rate formulation and a time-space-discrete incremental setting. The inherent symmetry of the proposed multi-field formulations is an attractive feature with regard to their numerical implementation. The unified character of the framework is demonstrated by a spectrum of model problems, which covers phase field models and formulations of gradient damage and plasticity.  相似文献   

19.
We discuss the epitaxial growth of an elastic film, allowing for stress and diffusion within the film surface as well as nonequilibrium interactions between the film and the vapor. Our approach, which relies on recent ideas concerning configurational forces, is based on: (i) standard (Newtonian) balance laws for forces and moments together with an independent balance law for configurational forces; (ii) atomic balances, one for each species of mobile atoms; (iii) a mechanical version of the second law that accounts for temporal changes in free energy, energy flows due to atomic transport, and power expended by both standard and configurational forces; (iv) thermodynamically consistent constitutive relations for the film surface and for the interaction between the surface and the vapor environment. The normal component of the configurational force balance at the surface represents a generalization, to a dynamical context involving dissipation, of a condition that would arise in equilibrium by considering variations of the total free energy with respect to the configuration of the film surface. Our final results consist of partial differential equations that govern the evolution of the film surface.  相似文献   

20.
在平面一维弹塑性流动有限差分计算程序中加入4种延性金属层裂模型,对平板撞击层裂实验进行数值模拟。结果表明:简单最大拉伸应力模型和简单损伤累积模型能定性反映层裂的物理现象,由于忽略损伤对本构的影响,计算结果和实验有偏差,但模型要求参数较少,对于一些精度要求不是很高的工程问题,可以采用;从材料损伤断裂物理本质出发,采用微损伤统计方法得到的NAG模型和封加波损伤度函数模型,能很好地再现实测的自由面速度剖面,数值计算结果与实验吻合很好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号