首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A')→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method.  相似文献   

2.
A three‐dimensional potential energy surface of the electronic ground state of ZnH2 (${X}^1\sum _g^ +$ ) molecule is constructed from more than 7500 ab initio points calculated at the internally contracted multireference configuration interaction with the Davidson correction (icMRCI+Q) level employing large basis sets. The calculated relative energies of various dissociation reactions are in good agreement with the previous theoretical/experimental values. Low‐lying vibrational energy levels of ZnH2, ZnD2, and HZnD are calculated on the three‐dimensional potential energy surface using the Lanczos algorithm, and found to be in good agreement with the available experimental band origins and the previous theoretical values. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

3.
The structure of the conformationally flexible 2-fluoroethanal molecule (CH2FCHO, FE) in the ground (S0) and lowest excited triplet (T1) and singlet (S1) electronic states was investigated by ab initio quantum-chemical methods. The FE molecule in the S0 state was found to exist as two conformers, viz., as cis (the F—C—C—O angle is 0°) and trans (the F—C—C—O angle is 180°) conformers. On going both to the T1 and S1 states, the FE molecule undergoes substantial structural changes, in particular, the CH2F top is rotated with respect to the core and the carbonyl CCHO fragment becomes nonplanar. The potential energy surfaces for the T1 and S1 states are qualitatively similar, viz., six minima in each of the excited states of FE correspond to three pairs of mirror-symmetrical conformers. Based on the potential energy surfaces calculated for the FE molecule in the T1 and S1 states, the one-dimensional problems on the torsion and inversion nuclear motions as well as the two-dimensional torsion-inversion problems were solved.  相似文献   

4.
5.
《Chemical physics》2005,308(3):277-284
The ground state potential energy surface for He–F2 has been generated using the coupled-cluster singles and doubles excitation approach with perturbative treatment of triple excitations [CCSD(T)] and multi-reference configuration interaction (MRCI) methodologies, with augmented correlation consistent quadruple zeta basis set and diffused functions. Both the CCSD(T) and MRCI surfaces are compared and the results analyzed. The CCSD(T) surface exhibits van der Waals minima at different distances for different orientations of He approaching F2 and is adequate to describe accurately only in the region around the equilibrium bond distance of F2. The MRCI surface, on the other hand, yields reliable results for a wider range of F–F bond distances leading to the correct asymptote. Davidson correction to the MRCI surface makes it purely repulsive over the regions investigated.  相似文献   

6.
A wide adiabatic study is performed for NaRb molecule, involving 151Σ+ electronic states including the ionic state Na?Rb+, as well as 143Σ+, 1–91,3Π, and 1–51,3Δ states. This investigation is performed using an ab initio approach which involves the effective core potential, the core polarization potential with l‐dependent cut‐off functions. The NaRb system has been treated as a two‐electron system and the full valence configuration interaction is easily achieved. The spectroscopic constants Re, De, Te, ωe, ωexe, Be, and D0 for all these states are derived. We have also computed the vibrational levels as well their spacing for different values of J. In addition, permanent and transition dipole moments are determined and analyzed. The Dunham coefficients have been used to perform experimental spacing to compare directly with our results. The present calculations on NaRb extend previous theoretical works to numerous electronic excited states in the various symmetries. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Potential energy surfaces and vibrational spectra for the four isotopomers (l5N14N16O,l4NI5N16O,15N2 16O and15N2 18O) of N2O have been investigated with the vibrational self-consistent field-configuration interaction method. It is shown that the isotopomers with the same end atom have similar values of the potential parameters, and that substitution with different end atoms can affect the potential obviously. The calculated vibrational levels are in good agreement with the observed values by the optimization of several potential parameters (f 1 (1),f 13 (0),f 3 (1) which are sensitive to isotopic substitutions. Project supported by the National Natural Science Foundation of China (Grant No. 29673029).  相似文献   

8.
Summary The ground state (X 1+) and several excited state (A 3,c 3+,C 1,D 1+, andE 3+) potential energy surfaces for the diatomic molecules MgAr, CdAr, and BeAr have been computed using complete active space self-consistent field (CASSCF) wavefunctions and valence double- and triplezeta quality basis sets augmented with polarization and diffuse functions. Pump-and-probe laser experiments have examined the quenching, of excited singlet states of metal-rare gas complexes such as CdXe to produce triplets that dissociate to3 P Jmetal atoms. This quenching, which is detected for CdXe but not for CdAr or MgAr, is thought to occur via a crossing or strong coupling of a repulsive triplet curve correlating to the underlying3 P state of the metal, with an attractive singlet curve that correlates to the higher1 P state of the metal. The present work indicates that the attractiveC 1 and repulsivec 3+ curves of MgAr and CdArdo not intersect in the energetically accessible region of theC 1 surface, unlike the corresponding curves for the CdXe diatom. These data are consistent with the absence of3 P J Cd atoms in the MgAr and CdAr experiments, respectively. However, an alternative quenching mechanism involving vibronic coupling between theC 1 vibrational eigenstates and the continuum eigenstates of the underlying repulsive3+ surface may be operative; this possibility is examined qualitatively and predicted to be unlikely for MgAr (due to small spin-orbit coupling) and CdAr (due to unfavorable vibronic factors). BeAr, which has yet to be probed experimentally, is predicted to be bound by 770 and 900 cm–1 in theD 1+ state (which has metal 2s2p character) and theE 3+ state (which has Rydberg metal 2s3s character), respectively, and to display interesting potential curve intersections.Dedicated to Prof. Klaus Ruedenberg  相似文献   

9.
Restricted Hartree-Fock calculations of the Cl2 molecule have been carried out to investigate the X-ray excited states below Cl 2p-electron ionization potential. Some inner shell excited states are shown to have a valence or a valence-Rydberg nature that results in a considerable intensity of the appropriate transitions in the X-ray absorption spectrum. A significant interaction among some electron configurations with a 2p vacancy is predicted.  相似文献   

10.
The algebraic Hamiltonian of NO2 is optimized using U(4) algebra via fitting to 102 observed vibrational lines. The RMS error of the fitting is 2.39 cm?1. We calculated highly excited vibrational energy levels using this optimized Hamiltonian, and then obtained the potential energy surface for the electronic ground state by using the classical limit of the U(4) algebraic Hamiltonian. We also calculated the dissociation energies, the force constants etc. Our results are in good agreement with the other theoretical results. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

11.
The dynamics of elementary rate processes for H+O2 collisions on an ab initio potential energy surface have been simulated by quasiclassical trajectory theory (QCT). For H+O2 (v=0,j=1), we have obtained the reaction probabilityP r (E,b) as a function of collision energy E and impact parameterb, the reaction cross sectionS r as a function ofE, and the average values of the product quantum numbers of OH.For H+02 (v=2,j=1, 20, 40, 60, 80, 100;v=1, 3, 4, 5,j=1) atE=0.3 eV, we have found thatb max is about 4.5a 0 and the impact parameter at whichP r is maximum decreases asj increases. The reaction cross section increases asj andv become large. For inelastic collisions, whenb is small andj is large, the and are both small. For reactive collisions, almost equals zero, but the probability of being larger than zero increases with increasingj; and¯v OH even shows population inversion forj=100. Additional details of the dynamics are shown in figures of interparticle distance and stereographs.  相似文献   

12.
A slab approach in the framework of ab initio calculations was applied to study surface electronic states in In2O3 crystal. Density functional theory (DFT) calculations were carried out employing the WIEN 2k code and using the full potential method with Augmented Plane Waves + local orbitals (APW+lo) formalism. Total and partial DOS (Density of States) were calculated for In and O atoms in two upper (110) surface layers. Comparison of total and partial DOS allowed determining a contribution of electronic states of different In and O surface atoms into formation of surface electronic spectra and corresponding chemical bonds. A dominant ionic character of chemical bonds in In2O3 is found. Calculations were performed for three slab models with different geometry parameters. It was shown that an optimal ratio between the whole vertical size of a supercell and the vertical size of atomic cluster has to be chosen. The size of vacuum region in the slab model influences significantly on the reliability of calculated characteristics of the surface electronic structure. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
The molecular structure of 2,2-difluoroethanal (DFE) in the ground (S0) and lowest excited triplet (Ti) electronic states was investigated byab initio quantum-chemical methods. In the S0 state, the DFE molecule exists as the only stablecis conformer. The Ti↓S0 electronic excitation is accompanied by the rotation of the top and the deviation of the carbonyl fragment from planarity. For the DFE molecule in the Ti state, six minima corresponding to three pairs of enantiomers were found on the potential energy surface. Based on this potential energy surface, the problems on torsion and inversion nuclear motions were solved in the one- and two-dimensional approximations, and the interaction between these motions was revealed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 989–995, June, 2000.  相似文献   

14.
OCS电子基态势能面与振动光谱的理论研究   总被引:3,自引:0,他引:3  
卢语晖  周燕子  谢代前  鄢国森 《化学学报》2000,58(12):1516-1521
本文采用键长-键角内标系下的自洽场-组态相互作用方法精确计算了OCS分子的振动高激发态能级,并结合实验观测到的振动能级利用非线性最小二乘法优化电子基态势能函数中的势能参数。由优化所得的势能面计算出的振动激发态能级与50个实验观测到的振动能级比较,标准偏差为0.08cm^-^1。此外,还用该势能面计算了OCS同位素分子的振动能级,计算结果与实验值也十分吻合。  相似文献   

15.
把李代数方法得到的SO~2分子的代数Hamiltonian,利用相干态基经典化并找到一个新的变换,将分子的键角引入,而得到SO~2分子的势能面。由该势能面计算的解离能,所给出的势能面的立体图和相应的等高线以及力常数与其他方法给出的相一致。该方法可以推广到多原子分子及反应体系。  相似文献   

16.
Anab initio potential energy surface (PES) of ArF2 system has been obtained by using MP4 calculation with a large basis set including bond functions. There are two local minimums on the PES: one is T-shaped and the other is L-shaped. The L-shaped minimum is the global minimum with a well depth of -119.62 cm-1 atR = 0.3883nm. The T-shaped minimum has a well depth of -85.93cm-1 atR = 0.3486 nm. A saddle point is found atR = 0.3486 and τ = 61° with the well depth of -61.53 cm-1. The vibrational energy levels have been calculated by using VSCF-CI method. The results show that this PES supports 27 vibrational bound states, and the ground states are two degenerate states assigned to the L-type vibration.  相似文献   

17.
An extensive quantum chemical study of the potential energy surfaces (PES) for the association reaction of NH2 with CN and the subsequent isomerization and dissociation reactions has been carried out using density functional theory (DFT)/B3LYP/6‐311++G(3df,2p) level of theory on both singlet and triplet states. The reaction mechanism on the triplet surface is more complicated than that on the singlet surface. A total of 19 isomers and 46 transition states have been identified and characterized on the triplet PES. Among them, IM2 (IM2a), IM3 (IM3a, IM3b), and IM10 are the lowest‐lying isomers with thermodynamic stability. Twenty available dissociation channels, depending on the different initial isomers, have been identified. On the singlet surface, only 12 isomers and 16 transition states have been found, and among them IM1(S) and IM2(S) are the lowest‐lying isomers. The higher isomerization and dissociation barriers on the singlet surface indicate that the addition and the subsequent reactions of NH2+CN are most likely to occur on the triplet PES because of the lower barriers. A prediction can be made for the possible mechanism explaining the production of H+HNCN. Besides HNCN, other major products are NH+HCN and NH+HNC, which are produced by direct dissociation reactions from triplet IM2 and IM3, respectively. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

18.
Summary The solution of the Schrödinger equation for diatomic molecules when the finite element method is used gives the possibility to evaluate highly accurate basis-independent potential energy curves. In this work such types of numerically accurate potential energy curves on the HF level have been evaluated for Li2, Na2 and K2 and could be used as benchmarks in the optimization of basis sets. A comparison between recent LCAO HF calculations in which extended basis sets are used and the accurate values determined in this work show that there is a difference in total energy of 4×10–5 and 10–3 a.u. for Li, Li2, and Na, Na2, respectively. Evaluated dissociation energies are, however, due to the cancellation of numerical errors in much better agreement. Further, it is found that different exchange correlation potentials for the heavier molecules such as those given by von Barth-Hedin and Vosko, Wilk and Nusair reproduce experimental properties such as dissociation energies, vibrational frequencies almost as well as those achieved with advanced CI methods. TheX potential gives accurate bond lengths for Na2 and K2, whereas the dissociation energies are too small.  相似文献   

19.
A self-consistent-field (SCF)-configuration interaction (CI) (SCF-CI) method for determining the potential energy surface of a triatomic molecule from the observed vibrational band origins has been suggested. By this method, the SCF-CI procedure in the internal coordinates is used to calculate the vibrational bond origins and their first derivatives with respect to parameters in the potential energy function using the exact vibrational Hamiltonian, and the optimizer LMF in the nonlinear-squares problem is employed to optimize parameters in the potential energy function. This approach is used to optimize the potential energy function of the water molecule. The standard deviation of this fitting to the 70 observed band origins is 1.154cm-1.  相似文献   

20.
A three-dimensional global potential energy surface for the ground (X (1)Sigma(+)(g))electronic state of HgH(2) is constructed from more than 13,00 ab initio points. These points are generated using an internally contracted multireference configuration interaction method with the Davidson correction and a large basis set. Low-lying vibrational energy levels of HgH(2), HHgD, and HgD(2) calculated using the Lanczos algorithm are found to be in good agreement with the available experimental band origins. The majority of the vibrational energy levels up to 9000 cm(-1) are assigned with normal mode quantum numbers. Our results indicate a gradual transition for the stretching vibrations from the normal mode regime at low energies to the local mode regime near 9000 and 8000 cm(-1) for HgH(2) and HgD(2), respectively, as evidenced by a decreasing energy gap between the (0,0,n(3)) and (1,0,n(3)-1) vibrational states and bifurcation of the corresponding wave functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号