首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of momentum-resolved inelastic x-ray scattering with meV energy resolution to study the high-frequency atomic dynamics in disordered systems is here reviewed. The typical realization of this experiment is described together with some common models used to interpret the measured spectra and to extract parameters of interest for the investigation of disordered systems. With the help of some selected examples, the present status of the field is discussed. Particular attention is given to those results which are still open for discussion or controversial, and which will require further development of the technique to be fully solved. Such an instrumental development seems nowadays possible at the light of recently proposed schemes for advanced inelastic x-ray scattering spectrometers. To cite this article: G. Monaco, C. R. Physique 9 (2008).  相似文献   

2.
Resonant X-ray scattering is a method which combines high- resolution X-ray elastic diffraction and atomic core-hole spectroscopy for investigating electronic and magnetic long-range ordered structures in condensed matter. During recent years the development of theoretical models to describe resonant X-ray scattering amplitudes and the evolution of experimental techniques, which include the control and analysis of linear photon polarization and the introduction of extreme environment conditions such as low temperatures, high magnetic field and high pressures, have opened a new field of investigation in the domain of strongly correlated electron systems. To cite this article: L. Paolasini, F. de Bergevin, C. R. Physique 9 (2008).  相似文献   

3.
Modern synchrotron radiation (SR) sources have dramatically fostered the use of SR-based X-ray imaging. The relevant information such as density, chemical composition, chemical states, structure, and crystallographic perfection is mapped in two, or, increasingly, in three dimensions. The development of nano-science requires pushing spatial resolution down towards the nanoscale.The present article describes a selection of hard X-ray imaging and microanalysis techniques that emerged over the last few years, by taking advantage of the flux and coherence of the SR beams, as well as exploiting the advances in X-ray optics and detectors, and the increased possibilities of computers (memory, speed). Examples are given to illustrate the opportunities associated with the use of these techniques, and a number of recent references are provided. To cite this article: J. Baruchel et al., C. R. Physique 9 (2008).  相似文献   

4.
A review of X-ray intensity fluctuation spectroscopy   总被引:1,自引:0,他引:1  
This article reviews the literature on X-ray fluctuation intensity spectroscopy or, as it is often called, X-ray photon correlation spectroscopy. It highlights measurements using different types of diffuse scattering. To cite this article: M. Sutton, C. R. Physique 9 (2008).  相似文献   

5.
Optical Activity (OA) was only measured quite recently in the X-ray range using electric dipole–electric quadrupole interference terms that mix multipoles of opposite parity but are only present in systems with broken inversion symmetry. Natural OA refers to effects that are even with respect to time-reversal symmetry, whereas non-reciprocal OA is concerned with time-reversal odd contributions. Various types of X-ray dichroism related to either natural or non-reciprocal OA have been detected and are reviewed in the present paper. To cite this article: A. Rogalev et al., C. R. Physique 9 (2008).  相似文献   

6.
Hard X-ray PhotoEmission Spectroscopy (HAXPES) is a new tool for the study of bulk electronic properties of solids using synchrotron radiation. We review recent achievements of HAXPES, with particular reference to the VOLPE project, showing that high energy resolution and bulk sensitivity can be obtained at kinetic energies of 6–8 keV. We present also the results of recent studies on strongly correlated materials, such as vanadium sesquioxide and bilayered manganites, revealing the presence of different screening properties in the bulk with respect to the surface. We discuss the relevant experimental features of the metal–insulator transition in these materials. To cite this article: G. Panaccione et al., C. R. Physique 9 (2008).  相似文献   

7.
Nano-sciences, and in particular nano-physics, constitute a fascinating world of investigations where the experimental challenges are to synthesize, to address (for instance optically or electrically) to explore and promote the remarkable physical properties of new nano-materials. Somehow, one of the most promising realization of nano-sciences lies in carbon-based nano-materials with sp2 covalent bonds. In particular, carbon nanotubes, graphene and more recently ultra-narrow graphene nano-ribbons are envisioned as elementary bricks of the future of nano-electronics. However, prior to such an achievement, the first steps consist in understanding their fundamental electronic properties when they constitute the drain–source channel of a gated device or inter-connexion elements. In this article, we present the richness of challenging experiments combining single-object measurements with an extreme magnetic environment. We demonstrate that an applied magnetic field (B), along with a control of the electrostatic doping, drastically modifies the electronic band structure of a carbon nanotube based transistor. Several examples will be addressed in this presentation. When B is applied parallel to the tube axis, a quantum flux threading the tube induces a giant Aharonov–Bohm conductance modulation mediated by Schottky barriers whose profile is magnetic field dependent. In the perpendicular configuration, the applied magnetic field breaks the revolution symmetry along the circumference and non-conventional Landau states develop in the high field regime. By playing with a carbon nanotube based electronic Fabry–Perot resonator, the field dependence of the resonant states of the cavity reveals the onset of the first Landau state at zero energy. These experiments enlighten the outstanding efficiency of magneto-conductance experiments to probe the electronic properties of carbon based nano-materials. To cite this article: S. Nanot et al., C. R. Physique 10 (2009).  相似文献   

8.
Soft X-ray resonant magnetic scattering offers a unique element-, site- and valence-specific probe to study magnetic structures on the nanoscopic length scale. This new technique, which combines X-ray scattering with X-ray magnetic circular and linear dichroism, is ideally suited to investigate magnetic superlattices and magnetic domain structures. The theoretical analysis of the polarization dependence to determine the vector magnetization profile is presented. This is illustrated with examples studying the closure domains in self-organising magnetic domain structures, the magnetic order in patterned samples, and the local configuration of magnetic nano-objects using coherent X-rays. To cite this article: G. van der Laan, C. R. Physique 9 (2008).  相似文献   

9.
FALCON is a wide-field, multi-object integral field spectrograph equipped with adaptive optics. It is dedicated to the study of the formation process of primordial galaxies. The AO system uses natural guide stars, and the high sky coverage required for these studies is obtained using tomographic techniques for the wavefront analysis. The structure of the OA system is very new, and particularly suited for a future implementation on extremely large telescopes. To cite this article: E. Gendron et al., C. R. Physique 6 (2005).  相似文献   

10.
The proposed European X-ray Free-Electron Laser source (XFEL) will provide extremely brilliant (B>1033 ph/s/mm2/mrad2/0.1% bw) and highly coherent X-ray beams. Due to the pulse structure and the unprecedented brightness one will be able for the first time to study fast dynamics in the time domain, thus giving direct access to the dynamic response function S(Q,t), instead of S(Q,ω), which is of central importance for a variety of phenomena such as fast non-equilibrium dynamics. X-ray Photon Correlation Spectroscopy (XPCS) measures the temporal changes in a speckle pattern produced when coherent light is scattered by a disordered system and therefore allows the measurement of S(Q,t). This article summarizes important aspects of the scientific case for an XPCS instrument at the planned XFEL. New XPCS setups taking account of the XFEL pulse structure are described. To cite this article: G. Grübel, C. R. Physique 9 (2008).  相似文献   

11.
In this introductory article, I review the theory of nucleation by thermal activation and by quantum tunneling. The effect of heterogeneous nucleation at surfaces is discussed and a brief survey of experimental techniques is given. To cite this article: H.J. Maris, C. R. Physique 7 (2006).  相似文献   

12.
When an alloy is irradiated, atomic transport can occur through the two types of defects which are created: vacancies and interstitials. Recent developments of the self-consistent mean field (SCMF) kinetic theory could treat within the same formalism diffusion due to vacancies and interstitials in a multi-component alloy. It starts from a microscopic model of the atomic transport via vacancies and interstitials and yields the fluxes with a complete Onsager matrix of the phenomenological coefficients. The jump frequencies depend on the local environment through a ‘broken bond model’ such that the large range of frequencies involved in concentrated alloys is produced by a small number of thermodynamic and kinetic parameters. Kinetic correlations are accounted for through a set of time-dependent effective interactions within a non-equilibrium distribution function of the system. The different approximations of the SCMF theory recover most of the previous diffusion models. Recent improvements of the theory were to extend the multi-frequency approach usually restricted to dilute alloys to diffusion in concentrated alloys with jump frequencies depending on local concentrations and to generalize the formalism first developed for the vacancy diffusion mechanism to the more complex diffusion mechanism of the interstitial in the dumbbell configuration. To cite this article: M. Nastar, C. R. Physique 9 (2008).  相似文献   

13.
Nuclear resonance scattering is an atomistic spectroscopy sensitive to magnetic and electronic properties as well as slow and fast structural dynamics. Applications, which take advantage of both the outstanding properties of third generation synchrotron radiation sources and those of the Mössbauer effect, benefit most. Examples resulting from investigations at the ESRF will be given in applications to high pressure and low temperatures, nano-scale materials, and dynamics of disordered systems. To cite this article: R. Rüffer, C. R. Physique 9 (2008).  相似文献   

14.
Nucleation processes play a key role in the microstructure evolution of metallic alloys during thermomechanical treatments. These processes can involve phase transformations (such as precipitation) and structural instabilities (such as recrystallisation). Although the word ‘nucleation’ is used in both cases, the situation is profoundly different for precipitation and for recrystallisation on which this article is focussed. In the case of precipitation, species are conserved and the underlying physics is stochastic fluctuations, allowing the apparition of critical germs of the new phase. In the case of recrystallisation, the underlying physical phenomenon is the progressive growth of subgrain structures leading to an unstable configuration, allowing a dislocation free grain to grow at the expense of a dislocated one. The two cases require different types of modelling which are presented in the article. To cite this article: Y. Bréchet, G. Martin, C. R. Physique 7 (2006).  相似文献   

15.
Recent developments in multi-scale modelling, based on atomic scale calculations, are leading to a growing conviction that modelling will soon be used to design material components for nuclear reactors. In this article we discuss this assumption on the basis of the relationship between experimental studies and theoretical calculations of the microstructural evolution of materials under irradiation. In the first part of the paper, the available numerical models for long term microstructural evolutions are briefly reviewed. The experimental methods are presented in a second part. In the third part, several examples of fruitful relationships between modelling and experiments are discussed. To cite this article: A. Barbu, C. R. Physique 9 (2008).  相似文献   

16.
Under irradiation, all materials experience various forms of structural evolution, from the simplest, associated with point defect creation and accumulation, to complex phase changes, either towards equilibrium or nonequilibrium structures. In nonmetallic ceramics the same processes are known or probable; however, the nature of bonding, partly ionic and partly covalent, as well as the complexity associated with the long range character of the Coulomb interaction, have long posed great difficulties in defect and aging studies under irradiation. Our aim here is to review the current state of knowledge, stressing the specific characteristics of nonmetallic materials, from primary defect creation to collective behavior, with respect to both experimental facts as well as to modeling perspectives. Given the broad field covered, we will illustrate the problem by choosing a few model materials, mostly oxides, in which the whole spectrum of phenomena has been handled. We will begin with threshold energy studies, then go to microstructure formation and evolution, radiation enhanced diffusion results, and lastly to phase changes. To cite this article: Y. Limoge, C. R. Physique 9 (2008).  相似文献   

17.
What organization of condensed matter does resist irradiation, as a function of irradiation conditions? How to characterize the latter? We survey the advances in the field during the past three decades, when irradiation effects reduce to nuclear collisions. While in simple cases (structure defined by a scalar order parameter) one may define a stochastic potential, which yields the stationary states of the compounds under irradiation and their respective stability, in more general cases, we are left with brute force atomistic simulations to explore materials' behaviour as a function of irradiation conditions. Special attention is given to the kinetics of concentration fields under irradiation, a question with several practical implications. We conclude that irradiation conditions are best defined by three parameters: the cascade features (number of displacements and replacements, length of replacement sequences, …), the frequency of cascade occurrence, and the cumulated dose. We suggest cascade features be named ‘(elementary) dose’ and the cascade occurrence frequency ‘dose rate’. To cite this article: G. Martin, P. Bellon, C. R. Physique 9 (2008).  相似文献   

18.
Recent results obtained by 3D discrete Dislocation Dynamics (DD) simulations are reviewed. Firstly, in the case of fatigued AISI 316L stainless steel, it is shown how DD simulations can both explain the formation of persistent slip bands and give a criterion for crack initiation. The same study is performed in the case of precipitate hardened metals where the precipitate size plays a crucial role. Secondly, we show how molecular dynamics (MD) simulations can feed the DD simulations for two applications. The first concerns the modelling of BCC Fe for which the dislocation mobility is derived from MD simulations. The second considers the modelling of irradiated stainless steels (FCC), where MD is used to define the local rules of interactions between dislocations and Frank loops. To cite this article: M.C. Fivel, C. R. Physique 9 (2008).  相似文献   

19.
Time-reversed waves and super-resolution   总被引:1,自引:0,他引:1  
Time-reversal mirrors (TRMs) refocus an incident wavefield to the position of the original source regardless of the complexity of the propagation medium. TRMs have now been implemented in a variety of physical scenarios from GHz microwaves to MHz ultrasonics and to hundreds of Hz in ocean acoustics. Common to this broad range of scales is a remarkable robustness exemplified by observations at all scales that the more complex the medium (random or chaotic), the sharper the focus. A TRM acts as an antenna that uses complex environments to appear wider than it is, resulting for a broadband pulse, in a refocusing quality that does not depend on the TRM aperture.Moreover, when the complex environment is located in the near field of the source, time-reversal focusing opens completely new approaches to super-resolution. We will show that, for a broadband source located inside a random metamaterial, a TRM located in the far field radiated a time-reversed wave that interacts with the random medium to regenerate not only the propagating but also the evanescent waves required to refocus below the diffraction limit. This focusing process is very different from that developed with superlenses made of negative index material only valid for narrowband signals. We will emphasize the role of the frequency diversity in time-reversal focusing. To cite this article: M. Fink et al., C. R. Physique 10 (2009).  相似文献   

20.
High energy X-ray micro-optics   总被引:1,自引:0,他引:1  
A tremendous progress in X-ray optics development was made in the past decade. Progress has been driven by the unique properties of X-ray beams produced by third generation synchrotron sources. The very low emittance coupled with high brilliance allows one to develop efficient focusing devices for new X-ray microscopy techniques. This article provides an overview of the state-of-the-art in micro-focusing optics and methods for hard X-rays. The main emphasis is put on those methods which aim to produce submicron and nanometer resolution. These methods fall into three broad categories: reflective, refractive and diffractive optics.The basic principles and recent achievements are discussed for all optical devices. To cite this article: A. Snigirev, I. Snigireva, C. R. Physique 9 (2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号