首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionization conditions of each ionic species in lithium ionic liquid electrolytes, LiTFSI/BMI-TFSI and LiTFSI/BDMI-TFSI, were confirmed based on the diffusion coefficients of the species measured by the pulsed gradient spin-echo (PGSE) NMR technique. We found that the diffusion coefficient ratios of the cation and anion species D(Li)(obs)/D(F)(obs) of the lithium salt and D(H)(obs)/D(F)(obs) of the ionic liquid solvent were effective guides to evaluate the ionization condition responsible for their mobility. Lithium ions were found to be stabilized, forming the solvated species as Li(TFSI)3(2-). TFSI- anion coordination could be relaxed by the dispersion of silica to form a gel electrolyte, LiTFSI/BDMI-TFSI/silica. It is expected that the oxygen sites on the silica directly attract Li+, releasing the TFSI- coordination. The lithium species, loosing TFSI- anions, kept a random walk feature in the gel without the diffusion restriction attributed from the strong chemical and morphological effect as that in the gel with the polymer. We can conclude that the silica dispersion is a significant approach to provide the appropriate lithium ion condition as a charge-transporting species in the ionic liquid electrolytes.  相似文献   

2.
It is a common observation that when ionic liquids are added to electrolytes the performances of lithium ion cells become poor, while the thermal safeties of the electrolytes might be improved. In this study, this behavior is investigated based on the kinetics of ionic diffusion. As a model ionic liquid, we chose butyldimethylimidazolium hexafluorophosphate (BDMIPF(6)). The common solvent was propylene carbonate (PC), and lithium hexafluorophosphate (LiPF(6)) was selected as the lithium conducting salt. Ionic diffusion coefficients are estimated by using a pulsed field gradient NMR technique. From a basic study on the model electrolytes (BDMIPF(6) in PC, LiPF(6) in PC, and BDMIPF(6) + LiPF(6) in PC), it was found that the BDMI(+) from BDMIPF(6) shows larger diffusion coefficients than the Li(+) from LiPF(6). However, the anionic (PF(6)(-)) diffusion coefficients present little difference between the model electrolytes. The higher diffusion coefficient of BDMI(+) than that of Li(+) suggests that the poor C-rate performance of lithium ion cells containing ionic liquids as an electrolyte component can be attributed to the two-cation competition between Li(+) and BDMI(+).  相似文献   

3.
聚合物固体电解质中的离子状态与导电机理的研究   总被引:5,自引:0,他引:5  
制备得到了一种新颖的聚氨酯和丙烯酸酯复合梳形交联聚合物 (Combcross linkedpolymer) ,并以此聚合物为基体加入不同含量的高氯酸锂盐制得一系列聚合物固体电解质 ,其室温电导率可以达到 3 4× 10 - 5S·cm- 1 .通过Raman、DSC、SEM及电性能等研究了电解质中的盐浓度与离子存在状态及离子电导率之间的关系 .结果显示随着盐浓度的增加 ,聚合物固体电解质中离子对的比例和电导率都迅速增加 ,说明离子对 (由多个醚氧原子、阴离子和阳离子组成 )对体系导电起着积极的作用 .  相似文献   

4.
《Liquid crystals》1998,25(3):295-300
A new liquid crystalline phase, induced by the addition of small amounts of a non-mesogenic solute (such as dimethyl sulphoxide or methyl iodide) to a quaternary ammonium salt, N -methyl- N, N, N-trioctadecylammonium iodide (MTAI), has been detected by NMR and optical microscopic studies. In some cases, there is a coexistence of nematic and smectic phases. Information on the ordering of the phases in the magnetic field of the spectrometer has been derived from NMR spectra of a dissolved molecule, 13C-enriched methyl iodide. The low order parameter of the pure thermotropic nematic phase of the salt provides firstorder spectra of the dissolved oriented molecules. Analyses of spectra of cis , cis -mucononitrile exemplifies the utility of the MTAI nematic phase in the determination of structural parameters of the solute.  相似文献   

5.
Electrophoretic nuclear magnetic resonance (eNMR) is a powerful tool in studies of nonaqueous electrolytes, such as ionic liquids. It delivers electrophoretic mobilities of the ionic constituents and thus sheds light on ion correlations. In applications of liquid electrolytes, uncharged additives are often employed, detectable via 1H NMR. Characterizing their mobility and coordination to charged entities is desirable; however, it is often hampered by small intensities and 1H signals overlapping with major constituents of the electrolyte. In this work, we evaluate methods of phase analysis of overlapping resonances to yield electrophoretic mobilities even for minor constituents. We use phase-sensitive spectral deconvolution via a set of Lorentz distributions for the investigation of the migration behavior of additives in two different ionic liquid-based lithium salt electrolytes. For vinylene carbonate as an additive, no field-induced drift is observed; thus, its coordination to the Li+ ion does not induce a correlated drift with Li+. On the other hand, in a solvate ionic liquid with tetraglyme (G4) as an additive, a correlated migration of tetraglyme with lithium as a complex solvate cation is directly proven by eNMR. The phase evaluation procedure of superimposed resonances thus broadens the applicability of eNMR to application-relevant complex electrolyte mixtures containing neutral additives with superimposed resonances.  相似文献   

6.
Frequency and temperature dependent NMR relaxation measurements were performed on deuteriated benzene, pyrene and triphenylene dissolved in the nematic phase of a discotic liquid crystal. The results show a strong frequency dependence of the spectral densities. Based on the symmetries of the system and the usual model for director fluctuations this frequency dependence should be equal for J1 and J2. From fitting the commonly used model of rotational diffusion and director fluctuations to the data we see that this is not the case for benzene and triphenylene, even though the fits themselves are satisfactory. Values for the elastic constants, effective viscosity and translational diffusion in similar discotic liquid crystals do not account quantitatively for the frequency dependence of benzene. For both pyrene and triphenylene quantitative comparison was impossible due to lack of translational diffusion data. We also find that the so-called cut-off wave-length is of the order of the dimensions of the liquid crystal molecules, just as in ordinary nematics.  相似文献   

7.
In view of the nature of orderness in structure and the mesomorphism in property of liquid crystal, the function of which is further exploited by integrating it with the feature of crown ether. The monoarmed crown ether liquid crystals are successfully applied to the imitation of biomembrane transport. Binary component membrane composed of crown ether liquid crystal and PVC was first developed. Such a novel model of biomimetic membrane is capable of imitating ingeniously the thermocontrolling transport of biomembrane, thus the essential function of liquid crystal in membane transport is more fully exploited. It was suggested, consequently, that the molecules of the crown ether liquid crystal could assemble themselves to form ionic channels, as they exist in mesophase.Of still more significance is that the thermocontrolling transport of ions through the membrane is found to be operative selectively and the permeation of ion is under the direct influence of the thermal turmoil of the crown ether liquid cr  相似文献   

8.
A novel ionic liquid crystal (ILC) system (C(12)MImI/I(2)) with a smectic A phase used as an electrolyte for a dye-sensitized solar cell (DSSC) showed the higher short-circuit current density (J(SC)) and the higher light-to-electricity conversion efficiency than the system using the non-liquid crystalline ionic liquid (C(11)MImI/I(2)), due to the higher conductivity of ILC. To investigate charge transport properties of the electrolytes in detail, the exchange reaction-based diffusion coefficients (D(ex)) were evaluated. The larger D(ex) value of ILC supported that the higher conductivity of ILC is attributed to the enhancement of the exchange reaction between iodide species. As a result of formation of the two-dimensional electron conductive pathways organized by the localized I(3)- and I- at S(A) layers, the concentration of polyiodide species exemplified by I(m)- (m = 5, 7, ...) was higher in C(12)MImI/I(2). However, as the increment of the concentration of polyiodide species is less than that of D(ex), the contribution of a two-dimensional structure of the conductive pathway through the increase of collision frequency between iodide species was proposed. Furthermore, a quasi-solid-state ionic liquid crystal DSSC was successfully fabricated by employing a low molecular gelator. Addition of the 5.0 g/L gelator to ILC improved light-to-electricity conversion efficiency through the increase of J(SC) due to the enhancement of the conductivity in C(12)MImI/I(2)-gel.  相似文献   

9.
Proton NMR spectra of trimethyl acetic acid, dissolved in a benzoic acid type nematic liquid crystal, have been measured and analysed. Making use of the hydrogen bonding capabilities of this sort of nematic phase appears to be an excellent method to obtain very high solute orientations.  相似文献   

10.
The phase diagram of the nematic mesophase present in the tetradecyltrimethylammonium bromide/sodium bromide/water ternary system was determined. A calamitic nematic mesophase (NC) was observed which extends to very high concentrations of electrolyte. The order parameters of the surfactant head group in the mesophases were studied by the NMR quadrupolar splitting of the deuterated surfactant. On increasing the temperature of nematic mesophases with low electrolyte concentrations, a phase separation occurs with the formation of a more highly ordered hexagonal phase and an isotropic phase. Diffusion measurements of the isotropic micellar solution by the NMR PFG method were used to estimate hydrodynamic radii at low surfactant concentrations and to study micelle diffusion as the concentration of the surfactant was increased to the liquid crystalline region. At higher surfactant concentrations, the diffusion coefficient reached a limiting value. The calamitic nematic mesophase in this surfactant/electrolyte/water system appears to be formed by long wormlike micelles.  相似文献   

11.
Transport properties such as ionic conductivity, lithium transference number, and apparent salt diffusion coefficient are reported for solid polymer electrolytes (SPEs) prepared using several oligomeric bis[(perfluoroalkyl)sulfonyl]imide (fluorosulfonimide) lithium salts dissolved in high molecular weight poly(ethylene oxide) (PEO). The salt series consists of polyanions in which two discrete fluorosulfonimide anions are linked together by [(perfluorobutylene)disulfonyl]imide linker chains. The restricted diffusion technique was used to measure the apparent salt diffusion coefficients in SPEs, and cationic transference numbers were determined using both potentiostatic polarization and electrochemical impedance spectroscopy methods. A general trend of diminished salt diffusion coefficient with increasing anion size was observed and is opposite to the trend observed in ionic conductivity. This unexpected finding is rationalized in terms of the cumulative effects of charge carrier concentration, anion mobility, ion pairing, host plasticization by the anions, and salt phase segregation on the conductivity.  相似文献   

12.
《Liquid crystals》1998,25(6):733-744
Miscibility phase diagrams of mixtures of side-on side chain liquid crystalline polymers (s-SCLCP) and low molar mass liquid crystals (E48 and E44) have been established by means of polarized optical microscopy and light scattering. E48 and E44 are cyanobiphenyl-based eutectic nematic liquid crystal (LC) mixtures with nematic-isotropic transition temperatures of 93 and 105 C, respectively. The phase diagram of the s-SCLCP/E48 system reveals the coexistence of an isotropic nematic region and a single nematic phase in order of descending temperature. The single nematic phase suggests that the pair is miscible in the nematic region. On the other hand, the s-SCLCP/E44 mixture shows liquid liquid and nematic nematic coexistence phases, suggestive of the immiscibility character of the pair. These nematic phase diagrams of the s-SCLCP/E48 and s-SCLCP/E44 have been analysed in the context of the combined Flory-Huggins (FH) free energy for isotropic mixing and the Maier-Saupe (MS) free energy for nematic ordering of the mesogens. This combined FH/MS theory is capable of predicting the observed nematic phase diagrams consisting of liquid liquid, liquid nematic, nematic nematic, and the pure nematic regions. The change of colour accompanying the appearance and disappearance of the inversion walls may be attributed to the temperature dependence of birefringence.  相似文献   

13.
The ion dynamics in a novel sodium‐containing room‐temperature ionic liquid (IL) consisting of an ether‐functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf2] anion with various concentrations of Na[NTf2] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf2] salt (over 2 mol kg?1) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether‐functionalised ammonium and Na cations, possibly with the latter species acting as cross‐links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na‐based device.  相似文献   

14.
The effects of dissolved electrolytes on the structure of liquid formamide have been investigated by Raman spectroscopy. The spectral features are dependent on the concentration and nature of the dissolved electrolyte and are discussed in terms of direct electrolyte formamide interactions. Two vN—H bands, arising from ion—formamide species, have been observed superimposed on the spectrum of residual liquid formamide. The results lend further support to the interaction model for electrolytes in liquid formamide previously proposed by us on the basis of nuclear magnetic resonance and infrared spectral data.  相似文献   

15.
Room temperature ionic liquids (RTILs) have been used as electrolytes to investigate the anionic structure dependence of the photoelectrochemical responses of dye-sensitized solar cells (DSCs). A series of RTILs with a fixed cation structure coupling with various anion structures are employed, in which 1-methyl-3-propylimidazolium iodide (PMII) and I(2) are dissolved as redox couples. It is found that both the diffusivity of the electrolyte and the photovoltaic performance of the device show a strong dependence on the fluidity of the ionic liquids, which is primarily altered by the anion structure. Further insights into the structure-dependent physical properties of the employed RTILs are discussed in terms of the reported van der Waals radius, the atomic charge distribution over the anion backbones, the interaction energy of the anion and cation, together with the existence of ion-pairs and ion aggregates. Particularly, both the short-circuit photocurrent and open-circuit voltage exhibit obvious fluidity dependence. Electrochemical impedance and intensity-modulated photovoltage/photocurrent spectroscopy analysis further reveal that increasing the fluidity of the ionic liquid electrolytes could significantly decrease the diffusion resistance of I(3)(-) in the electrolyte, and retard the charge recombination between the injected electrons with triiodide in the high-viscous electrolyte, thus improving the electron diffusion length in the device, as well as the photovoltaic response. However, the variation of the electron diffusion coefficients is trivial primarily due to the effective charge screening of the high cation concentration.  相似文献   

16.
Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim(+)][Tf(2)N(-)]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim(+)][Dca(-)]), are generated by vaporizing ionic liquid submicrometer aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim(+) and Bmim(+), presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim(+)][Tf(2)N(-)] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicrometer aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally "cooler" source of isolated intact ion pairs in the gas phase compared to effusive sources.  相似文献   

17.
Abstract

Frequency and temperature dependent NMR relaxation measurements were performed on deuteriated benzene, pyrene and triphenylene dissolved in the nematic phase of a discotic liquid crystal. The results show a strong frequency dependence of the spectral densities. Based on the symmetries of the system and the usual model for director fluctuations this frequency dependence should be equal for J 1 and J 2. From fitting the commonly used model of rotational diffusion and director fluctuations to the data we see that this is not the case for benzene and triphenylene, even though the fits themselves are satisfactory. Values for the elastic constants, effective viscosity and translational diffusion in similar discotic liquid crystals do not account quantitatively for the frequency dependence of benzene. For both pyrene and triphenylene quantitative comparison was impossible due to lack of translational diffusion data. We also find that the so-called cut-off wave-length is of the order of the dimensions of the liquid crystal molecules, just as in ordinary nematics.  相似文献   

18.
Protic ionic liquids are promising candidates for many applications, including as spacecraft propellants. For both fundamental interest and understanding clustering and dissociation during electrospray‐based propulsion, it is useful to explore the dissociation pathways of protic ionic liquid clusters, as well as the factors affecting the relative contributions of each pathway to the observed MS/MS spectra. With that said, most of the published reports on ionic liquid cluster dissociation have focused on aprotic ionic liquids. The purpose of the current work is to explore the dissociation pathways (eg, loss of amine, nitric acid, or ion pair) of alkylammonium nitrates using energy‐resolved collision‐induced dissociation. Here, it was found that, in general, protic ionic liquids have multiple dissociation pathways—namely, protic ionic liquids can lose their neutralized cation (here, an alkylamine) or neutralized anion (here, nitric acid)—in addition to the ion pair dissociation familiar to aprotic salt and aprotic ionic liquid clusters. In general, increasing the basicity of the cation (here, through increasing the degree of alkylation) decreases the propensity to follow these alternative pathways. Interestingly, increasing the cluster size has a similar effect: as cluster size increases, nitric acid loss decreases. These results will help better model and design protic ionic liquids for electrospray‐based spacecraft propulsion and help provide a better understanding for the general behavior of protic ionic liquids versus aprotic ionic liquids within mass spectrometers.  相似文献   

19.
Novel composite, gel-type polymer electrolytes have been prepared by dispersing selected ceramic powders into a matrix formed by a lithium salt solution contained in a poly(acrylonitrile) (PAN) network. The electrochemical characterization demonstrates that these new types of composite gel electrolytes have high ionic conductivity, wide electrochemical stability and, particularly, high chemical integrity (no liquid leakage) even at temperatures above ambient. These unique properties make the composite gel membranes particularly suitable as electrolyte separators in lithium ion polymer batteries.  相似文献   

20.
Liquid electrolytes with high ionic conductivity, high transference number for the target ions, and excellent electrochemical, chemical, and thermal stability are essential for electrochemical energy storage devices. Water-in-salt (WIS) electrolytes, in which the salt–water ratio is larger than one, are gaining intensive attention in the electrochemical community. Here, we review the recent work on WIS electrolytes and the closely related water-in-ionic liquid electrolytes. We highlight the fact that many properties of these electrolytes, in bulk and at electrolyte–electrode interfaces, are underpinned by the physics and chemistry of the interfaces formed between water and ions (or aggregated water/ion clusters). Manipulating these interfaces by tailoring the selection of ions and water–ion ratio opens up new dimensions in the optimization of liquid electrolytes but also poses new challenges. We conclude the review by highlighting several directions for research on WIS electrolytes, in particular, the study of WIS electrolyte–electrode interfaces using surface force measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号