首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A global optimization algorithm is proposed for finding the global minimum potential energy conformations of small molecules. The minimization of the total potential energy is formulated on an independent set of internal coordinates involving only torsion (dihedral) angles. Analytical expressions for the Euclidean distances between non-bonded atoms, which are required for evaluating the individual pairwise potential terms, are obtained as functions of bond lengths, covalent bond angles, and torsion angles. A novel procedure for deriving convex lower bounding functions for the total potential energy function is also introduced. These underestimating functions satisfy a number of important theoretical properties. A global optimization algorithm is then proposed based on an efficient partitioning strategy which is guaranteed to attain -convergence to the global minimum potential energy configuration of a molecule through the solution of a series of nonlinear convex optimization problems. Moreover, lower and upper bounds on the total finite number of required iterations are also provided. Finally, this global optimization approach is illustrated with a number of example problems.  相似文献   

2.
In this paper, we consider a global optimization problem for a symmetric Lipschitz continuous function \(g:[a,b]^k\rightarrow {\mathbb {R}}\), whose domain \([a,b]^k\subset {\mathbb {R}}^k\) consists of k! hypertetrahedrons of the same size and shape, in which function g attains equal values. A global minimum can therefore be searched for in one hypertetrahedron only, but then this becomes a global optimization problem with linear constraints. Apart from that, some known global optimization algorithms in standard form cannot be applied to solving the problem. In this paper, it is shown how this global optimization problem with linear constraints can easily be transformed into a global optimization problem on hypercube \([0,1]^k\), for the solving of which an applied DIRECT algorithm in standard form is possible. This approach has a somewhat lower efficiency than known global optimization methods for symmetric Lipschitz continuous functions (such as SymDIRECT or DISIMPL), but, on the other hand, this method allows for the use of publicly available and well developed computer codes for solving a global optimization problem on hypercube \([0,1]^k\) (e.g. the DIRECT algorithm). The method is illustrated and tested on standard symmetric functions and very demanding center-based clustering problems for the data that have only one feature. An application to the image segmentation problem is also shown.  相似文献   

3.
Deterministic branch-and-bound algorithms for continuous global optimization often visit a large number of boxes in the neighborhood of a global minimizer, resulting in the so-called cluster problem (Du and Kearfott in J Glob Optim 5(3):253–265, 1994). This article extends previous analyses of the cluster problem in unconstrained global optimization (Du and Kearfott 1994; Wechsung et al. in J Glob Optim 58(3):429–438, 2014) to the constrained setting based on a recently-developed notion of convergence order for convex relaxation-based lower bounding schemes. It is shown that clustering can occur both on nearly-optimal and nearly-feasible regions in the vicinity of a global minimizer. In contrast to the case of unconstrained optimization, where at least second-order convergent schemes of relaxations are required to mitigate the cluster problem when the minimizer sits at a point of differentiability of the objective function, it is shown that first-order convergent lower bounding schemes for constrained problems may mitigate the cluster problem under certain conditions. Additionally, conditions under which second-order convergent lower bounding schemes are sufficient to mitigate the cluster problem around a global minimizer are developed. Conditions on the convergence order prefactor that are sufficient to altogether eliminate the cluster problem are also provided. This analysis reduces to previous analyses of the cluster problem for unconstrained optimization under suitable assumptions.  相似文献   

4.
We use the simple, but little-known, result that a uniformly continuous function on a convex set is -Lipschitz (as defined below) to extend Piyavskii's algorithm for Lipschitz global optimization to the larger domain of continuous (not-necessarily-Lipschitz) global optimization.  相似文献   

5.
In general, classical iterative algorithms for optimization, such as Newton-type methods, perform only local search around a given starting point. Such feature is an impediment to the direct use of these methods to global optimization problems, when good starting points are not available. To overcome this problem, in this work we equipped a Newton-type method with the topographical global initialization strategy, which was employed together with a new formula for its key parameter. The used local search algorithm is a quasi-Newton method with backtracking. In this approach, users provide initial sets, instead of starting points. Then, using points sampled in such initial sets (merely boxes in \({\mathbb {R}}^{n}\)), the topographical method selects appropriate initial guesses for global optimization tasks. Computational experiments were performed using 33 test problems available in literature. Comparisons against three specialized methods (DIRECT, MCS and GLODS) have shown that the present methodology is a powerful tool for unconstrained global optimization.  相似文献   

6.
The paper is devoted to the convergence properties of finite-difference local descent algorithms in global optimization problems with a special -convex structure. It is assumed that the objective function can be closely approximated by some smooth convex function. Stability properties of the perturbed gradient descent and coordinate descent methods are investigated. Basing on this results some global optimization properties of finite-difference local descent algorithms, in particular, coordinate descent method, are discovered. These properties are not inherent in methods using exact gradients.The paper was presented at the II. IIASA-Workshop on Global Optimization, Sopron (Hungary), December 9–14, 1990.  相似文献   

7.
A new method for continuous global minimization problems, acronymed SCM, is introduced. This method gives a simple transformation to convert the objective function to an auxiliary function with gradually fewer local minimizers. All Local minimizers except a prefixed one of the auxiliary function are in the region where the function value of the objective function is lower than its current minimal value. Based on this method, an algorithm is designed which uses a local optimization method to minimize the auxiliary function to find a local minimizer at which the value of the objective function is lower than its current minimal value. The algorithm converges asymptotically with probability one to a global minimizer of the objective function. Numerical experiments on a set of standard test problems with several problems' dimensions up to 50 show that the algorithm is very efficient compared with other global optimization methods.  相似文献   

8.
A Radial Basis Function Method for Global Optimization   总被引:5,自引:0,他引:5  
We introduce a method that aims to find the global minimum of a continuous nonconvex function on a compact subset of . It is assumed that function evaluations are expensive and that no additional information is available. Radial basis function interpolation is used to define a utility function. The maximizer of this function is the next point where the objective function is evaluated. We show that, for most types of radial basis functions that are considered in this paper, convergence can be achieved without further assumptions on the objective function. Besides, it turns out that our method is closely related to a statistical global optimization method, the P-algorithm. A general framework for both methods is presented. Finally, a few numerical examples show that on the set of Dixon-Szegö test functions our method yields favourable results in comparison to other global optimization methods.  相似文献   

9.
Natural basic concepts in multiple-objective optimization lead to difficult multiextremal global optimization problems. Examples include detection of efficient points when nonconvexities occur, and optimization of a linear function over the efficient set in the convex (even linear) case. Assuming that a utility function exists allows one to replace in general the multiple-objective program by a single, nonconvex optimization problem, which amounts to a minimization over the efficient set when the utility function is increasing. A new algorithm is discussed for this utility function program which, under natural mild conditions, converges to an -approximate global solution in a finite number of iterations. Applications include linear, convex, indefinite quadratic, Lipschitz, and d.c. objectives and constraints.  相似文献   

10.
The aim of this paper is to show that the new continuously differentiable exact penalty functions recently proposed in literature can play an important role in the field of constrained global optimization. In fact they allow us to transfer ideas and results proposed in unconstrained global optimization to the constrained case.First, by drawing our inspiration from the unconstrained case and by using the strong exactness properties of a particular continuously differentiable penalty function, we propose a sufficient condition for a local constrained minimum point to be global.Then we show that every constrained local minimum point satisfying the second order sufficient conditions is an attraction point for a particular implementable minimization algorithm based on the considered penalty function. This result can be used to define new classes of global algorithms for the solution of general constrained global minimization problems. As an example, in this paper we describe a simulated annealing algorithm which produces a sequence of points converging in probability to a global minimum of the original constrained problem.  相似文献   

11.
Engineering design problems often involve global optimization of functions that are supplied as black box functions. These functions may be nonconvex, nondifferentiable and even discontinuous. In addition, the decision variables may be a combination of discrete and continuous variables. The functions are usually computationally expensive, and may involve finite element methods. An engineering example of this type of problem is to minimize the weight of a structure, while limiting strain to be below a certain threshold. This type of global optimization problem is very difficult to solve, yet design engineers must find some solution to their problem – even if it is a suboptimal one. Sometimes the most difficult part of the problem is finding any feasible solution. Stochastic methods, including sequential random search and simulated annealing, are finding many applications to this type of practical global optimization problem. Improving Hit-and-Run (IHR) is a sequential random search method that has been successfully used in several engineering design applications, such as the optimal design of composite structures. A motivation to IHR is discussed as well as several enhancements. The enhancements include allowing both continuous and discrete variables in the problem formulation. This has many practical advantages, because design variables often involve a mixture of continuous and discrete values. IHR and several variations have been applied to the composites design problem. Some of this practical experience is discussed.  相似文献   

12.
In this paper, a recently proposed global Lipschitz optimization algorithm Pareto-Lipschitzian Optimization with Reduced-set (PLOR) is further developed, investigated and applied to truss optimization problems. Partition patterns of the PLOR algorithm are similar to those of DIviding RECTangles (DIRECT), which was widely applied to different real-life problems. However here a set of all Lipschitz constants is reduced to just two: the maximal and the minimal ones. In such a way the PLOR approach is independent of any user-defined parameters and balances equally local and global search during the optimization process. An expanded list of other well-known DIRECT-type algorithms is used in investigation and experimental comparison using the standard test problems and truss optimization problems. The experimental investigation shows that the PLOR algorithm gives very competitive results to other DIRECT-type algorithms using standard test problems and performs pretty well on real truss optimization problems.  相似文献   

13.
The well-balanced distribution of points over the surface of a sphere is of significant interest in various fields of science. The quality of point configurations is typically expressed by criterion functions that have many local optima. A general global optimization framework is suggested to solve such problems. To illustrate the viability of this approach, the model development and solver system LGO is applied to four different model versions. Numerical results – including the visual representation of criterion functions in these models – are presented. The global optimization approach can be tailored to specific problem settings, and it is also applicable to a large variety of other model forms.  相似文献   

14.
Finding all solutions of nonlinearly constrained systems of equations   总被引:8,自引:0,他引:8  
A new approach is proposed for finding all-feasible solutions for certain classes of nonlinearly constrained systems of equations. By introducing slack variables, the initial problem is transformed into a global optimization problem (P) whose multiple global minimum solutions with a zero objective value (if any) correspond to all solutions of the initial constrained system of equalities. All-globally optimal points of (P) are then localized within a set of arbitrarily small disjoint rectangles. This is based on a branch and bound type global optimization algorithm which attains finite-convergence to each of the multiple global minima of (P) through the successive refinement of a convex relaxation of the feasible region and the subsequent solution of a series of nonlinear convex optimization problems. Based on the form of the participating functions, a number of techniques for constructing this convex relaxation are proposed. By taking advantage of the properties of products of univariate functions, customized convex lower bounding functions are introduced for a large number of expressions that are or can be transformed into products of univariate functions. Alternative convex relaxation procedures involve either the difference of two convex functions employed in BB [23] or the exponential variable transformation based underestimators employed for generalized geometric programming problems [24]. The proposed approach is illustrated with several test problems. For some of these problems additional solutions are identified that existing methods failed to locate.  相似文献   

15.
We introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard approaches in global optimization are based on convex relaxations. Thanks to the fact that only simple bound constraints are present, minimizing the separable underestimator can be done very quickly. The underestimators are computed monomial-wise after the original polynomial has been shifted. We show that such valid underestimators exist and their degree can be bounded when the degree of the polynomial objective function is bounded, too. For the quartic case, all optimal monomial underestimators are determined analytically. We implemented and tested the branch-and-bound algorithm where these underestimators are hardcoded. The comparison against standard global optimization and polynomial optimization solvers clearly shows that our method outperforms the others, the only exception being the binary case where, though, it is still competitive. Moreover, our branch-and-bound approach suffers less in case of dense polynomial objective function, i.e., in case of polynomials having a large number of monomials. This paper is an extended and revised version of the preliminary paper [4].  相似文献   

16.
In this paper we are concerned with the design of a small low-cost, low-field multipolar magnet for Magnetic Resonance Imaging with a high field uniformity. By introducing appropriate variables, the considered design problem is converted into a global optimization one. This latter problem is solved by means of a new derivative free global optimization method which is a distributed multi-start type algorithm controlled by means of a simulated annealing criterion. In particular, the proposed method employs, as local search engine, a derivative free procedure. Under reasonable assumptions, we prove that this local algorithm is attracted by global minimum points. Additionally, we show that the simulated annealing strategy is able to produce a suitable starting point in a finite number of steps with probability one.This work was supported by CNR/MIUR Research Program Metodi e sistemi di supporto alle decisioni, Rome, Italy.Mathematics Subject Classification (1991):65K05, 62K05, 90C56  相似文献   

17.
In the field of global optimization many efforts have been devoted to solve unconstrained global optimization problems. The aim of this paper is to show that unconstrained global optimization methods can be used also for solving constrained optimization problems, by resorting to an exact penalty approach. In particular, we make use of a non-differentiable exact penalty function ${P_q(x;\varepsilon)}$ . We show that, under weak assumptions, there exists a threshold value ${\bar \varepsilon >0 }$ of the penalty parameter ${\varepsilon}$ such that, for any ${\varepsilon \in (0, \bar \varepsilon]}$ , any global minimizer of P q is a global solution of the related constrained problem and conversely. On these bases, we describe an algorithm that, by combining an unconstrained global minimization technique for minimizing P q for given values of the penalty parameter ${\varepsilon}$ and an automatic updating of ${\varepsilon}$ that occurs only a finite number of times, produces a sequence {x k } such that any limit point of the sequence is a global solution of the related constrained problem. In the algorithm any efficient unconstrained global minimization technique can be used. In particular, we adopt an improved version of the DIRECT algorithm. Some numerical experimentation confirms the effectiveness of the approach.  相似文献   

18.
In this research paper we present an immunological algorithm (IA) to solve global numerical optimization problems for high-dimensional instances. Such optimization problems are a crucial component for many real-world applications. We designed two versions of the IA: the first based on binary-code representation and the second based on real values, called opt-IMMALG01 and opt-IMMALG, respectively. A large set of experiments is presented to evaluate the effectiveness of the two proposed versions of IA. Both opt-IMMALG01 and opt-IMMALG were extensively compared against several nature inspired methodologies including a set of Differential Evolution algorithms whose performance is known to be superior to many other bio-inspired and deterministic algorithms on the same test bed. Also hybrid and deterministic global search algorithms (e.g., DIRECT, LeGO, PSwarm) are compared with both IA versions, for a total 39 optimization algorithms.The results suggest that the proposed immunological algorithm is effective, in terms of accuracy, and capable of solving large-scale instances for well-known benchmarks. Experimental results also indicate that both IA versions are comparable, and often outperform, the state-of-the-art optimization algorithms.  相似文献   

19.
讨论了带线性不等式约束三次规划问题的最优性条件和最优化算法. 首先, 讨论了带有线性不等式约束三次规划问题的 全局最优性必要条件. 然后, 利用全局最优性必要条件, 设计了解线性约束三次规划问题的一个新的局部最优化算法(强局部最优化算法). 再利用辅助函数和所给出的新的局部最优化算法, 设计了带有线性不等式约束三 规划问题的全局最优化算法. 最后, 数值算例说明给出的最优化算法是可行的、有效的.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号