首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The goal of this paper is to establish a connection between two classical models of random graphs: the random graph G(n,p) and the random regular graph Gd(n). This connection appears to be very useful in deriving properties of one model from the other and explains why many graph invariants are universal. In particular, one obtains one-line proofs of several highly non-trivial and recent results on Gd(n).  相似文献   

2.
For exponential random graph models, under quite general conditions, it is proved that induced subgraphs on node sets disconnected from the other nodes still have distributions from an exponential random graph model. This can help in the theoretical interpretation of such models. An application is that for saturated snowball samples from a potentially larger graph which is a realization of an exponential random graph model, it is possible to do the analysis of the observed snowball sample within the framework of exponential random graph models without any knowledge of the larger graph.  相似文献   

3.
** Email: aas96106{at}maths.strath.ac.uk Grindrod (2002. Phys. Rev. E, 66, 0667021–0667027) posedthe problem of reordering a range-dependent random graph andshowed that it is relevant to the analysis of data sets frombioinformatics. Reordering under a random graph hypothesis canbe regarded as an extension of clustering and fits into thegeneral area of data mining. Here, we consider a generalizationof Grindrod's model and show how an existing spectral reorderingalgorithm that has arisen in a number of areas may be interpretedfrom a maximum likelihood range-dependent random graph viewpoint.Looked at this way, the spectral algorithm, which uses eigenvectorinformation from the graph Laplacian, is found to be automaticallytuned to an exponential edge density. The connection is precisefor optimal reorderings, but is weaker when approximate reorderingsare computed via relaxation. We illustrate the performance ofthe spectral algorithm in the weighted random graph contextand give experimental evidence that it can be successful forother edge densities. We conclude by applying the algorithmto a data set from the biological literature that describescortical connectivity in the cat brain.  相似文献   

4.
We provide an explicit algorithm for sampling a uniform simple connected random graph with a given degree sequence. By products of this central result include: (1) continuum scaling limits of uniform simple connected graphs with given degree sequence and asymptotics for the number of simple connected graphs with given degree sequence under some regularity conditions, and (2) scaling limits for the metric space structure of the maximal components in the critical regime of both the configuration model and the uniform simple random graph model with prescribed degree sequence under finite third moment assumption on the degree sequence. As a substantive application we answer a question raised by ?erný and Teixeira study by obtaining the metric space scaling limit of maximal components in the vacant set left by random walks on random regular graphs.  相似文献   

5.
The threshold probability of the occurrence of a copy of a balanced graph in a random distance graph is obtained. The technique used by P. Erd?s and A. Rényi for determining the threshold probability for the classical random graph could not be applied in the model under consideration. In this connection, a new method for deriving estimates of the number of copies of a balanced graph in a complete distance graph is developed.  相似文献   

6.
We show that there is a system of 14 non-trivial finitary functions on the random graph with the following properties: Any non-trivial function on the random graph generates one of the functions of this system by means of composition with automorphisms and by topological closure, and the system is minimal in the sense that no subset of the system has the same property. The theorem is obtained by proving a Ramsey-type theorem for colorings of tuples in finite powers of the random graph, and by applying this to find regular patterns in the behavior of any function on the random graph. As model-theoretic corollaries of our methods we rederive a theorem of Simon Thomas classifying the first-order closed reducts of the random graph, and prove some refinements of this theorem; also, we obtain a classification of the maximal reducts closed under primitive positive definitions, and prove that all reducts of the random graph are model-complete.  相似文献   

7.
Directed graphs with random black and white colourings of edges such that the colours of edges from different vertices are mutually independent are called locally dependent random graphs. Two random graphs are equivalent if they cannot be distinguished from percolation processes on them if only the vertices are seen. A necessary and sufficient condition is given for when a locally dependent random graph is equivalent to a product random graph; that is one in which the edges can be grouped in such a way that within each group the colours of the edges are equivalent and between groups they are independent. As an application the random graph corresponding to a spatial general epidemic model is considered.  相似文献   

8.
In this paper we describe a simple model for random graphs that have an n-fold covering map onto a fixed finite base graph. Roughly, given a base graph G and an integer n, we form a random graph by replacing each vertex of G by a set of n vertices, and joining these sets by random matchings whenever the corresponding vertices are adjacent in G. The resulting graph covers the original graph in the sense that the two are locally isomorphic. We suggest possible applications of the model, such as constructing graphs with extremal properties in a more controlled fashion than offered by the standard random models, and also "randomizing" given graphs. The main specific result that we prove here (Theorem 1) is that if is the smallest vertex degree in G, then almost all n-covers of G are -connected. In subsequent papers we will address other graph properties, such as girth, expansion and chromatic number. Received June 21, 1999/Revised November 16, 2000 RID="*" ID="*" Work supported in part by grants from the Israel Academy of Aciences and the Binational Israel-US Science Foundation.  相似文献   

9.
We study the connectivity properties of random Bluetooth graphs that model certain “ad hoc” wireless networks. The graphs are obtained as “irrigation subgraphs” of the well‐known random geometric graph model. There are two parameters that control the model: the radius r that determines the “visible neighbors” of each vertex and the number of edges c that each vertex is allowed to send to these. The randomness comes from the underlying distribution of vertices in space and from the choices of each vertex. We prove that no connectivity can take place with high probability for a range of parameters r, c and completely characterize the connectivity threshold (in c) for values of r close the critical value for connectivity in the underlying random geometric graph.Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 45–66, 2014  相似文献   

10.
We prove part of a conjecture by Johansson, Kahn, and Vu (Factors in random graphs, Random Struct. Algorithms 33 (2008), 1, 1–28.) regarding threshold functions for the existence of an H‐factor in a random graph . We prove that the conjectured threshold function is correct for any graph H which is not covered by its densest subgraphs. We also demonstrate that the main result of Johansson, Kahn, and Vu (Factors in random graphs, Random Struct. Algorithms 33 (2008), 1, 1–28) generalizes to multigraphs, digraphs, and a multipartite model.  相似文献   

11.
Alon, Krivelevich, and Sudakov [Random Struct Algorithms 13(3–4) (1998), 457–466.] designed an algorithm based on spectral techniques that almost surely finds a clique of size hidden in an otherwise random graph. We show that a different algorithm, based on the Lovász theta function, almost surely both finds the hidden clique and certifies its optimality. Our algorithm has an additional advantage of being more robust: it also works in a semirandom hidden clique model, in which an adversary can remove edges from the random portion of the graph. ©2000 John Wiley & Sons, Inc. Random Struct. Alg., 16, 195–208, 2000  相似文献   

12.
In this paper, the continuous-time independent edge-Markovian random graph process model is constructed. The authors also define the interval isolated nodes of the random graph process, study the distribution sequence of the number of isolated nodes and the probability of having no isolated nodes when the initial distribution of the random graph process is stationary distribution, derive the lower limit of the probability in which two arbitrary nodes are connected and the random graph is also connected, and prove that the random graph is almost everywhere connected when the number of nodes is sufficiently large.  相似文献   

13.
Random graphs with a given degree sequence are often constructed using the configuration model, which yields a random multigraph. We may adjust this multigraph by a sequence of switchings, eventually yielding a simple graph. We show that, assuming essentially a bounded second moment of the degree distribution, this construction with the simplest types of switchings yields a simple random graph with an almost uniform distribution, in the sense that the total variation distance is o(1). This construction can be used to transfer results on distributional convergence from the configuration model multigraph to the uniform random simple graph with the given vertex degrees. As examples, we give a few applications to asymptotic normality. We show also a weaker result yielding contiguity when the maximum degree is too large for the main theorem to hold.  相似文献   

14.
We classify the countably infinite oriented graphs which, for every partition of their vertex set into two parts, induce an isomorphic copy of themselves on at least one of the parts. These graphs are the edgeless graph, the random tournament, the transitive tournaments of order type  , and two orientations of the Rado graph: the random oriented graph, and a newly found random acyclic oriented graph.

  相似文献   


15.
We consider the following variant of the classical random graph process introduced by Erd?s and Rényi. Starting with an empty graph on n vertices, choose the next edge uniformly at random among all edges not yet considered, but only insert it if the graph remains planar. We show that for all ε > 0, with high probability, θ(n2) edges have to be tested before the number of edges in the graph reaches (1 + ε)n. At this point, the graph is connected with high probability and contains a linear number of induced copies of any fixed connected planar graph, the first property being in contrast and the second one in accordance with the uniform random planar graph model. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

16.
This paper investigates the number of random edges required to add to an arbitrary dense graph in order to make the resulting graph hamiltonian with high probability. Adding Θ(n) random edges is both necessary and sufficient to ensure this for all such dense graphs. If, however, the original graph contains no large independent set, then many fewer random edges are required. We prove a similar result for directed graphs. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 22: 33–42, 2003  相似文献   

17.
The configuration model is the most natural model to generate a random multigraph with a given degree sequence. We use the notion of dense graph limits to characterize the special form of limit objects of convergent sequences of configuration models. We apply these results to calculate the limit object corresponding to the dense preferential attachment graph and the edge reconnecting model. Our main tools in doing so are (1) the relation between the theory of graph limits and that of partially exchangeable random arrays (2) an explicit construction of our random graphs that uses urn models.  相似文献   

18.
Inspired by coalescent theory in biology, we introduce a stochastic model called “multi-person simple random walks” or “coalescent random walks” on a graph G. There are any finite number of persons distributed randomly at the vertices of G. In each step of this discrete time Markov chain, we randomly pick up a person and move it to a random adjacent vertex. To study this model, we introduce the tensor powers of graphs and the tensor products of Markov processes. Then the coalescent random walk on graph G becomes the simple random walk on a tensor power of G. We give estimates of expected number of steps for these persons to meet all together at a specific vertex. For regular graphs, our estimates are exact.  相似文献   

19.
We study Maker‐Breaker games played on the edge set of a random graph. Specifically, we analyze the moment a typical random graph process first becomes a Maker's win in a game in which Maker's goal is to build a graph which admits some monotone increasing property \begin{align*}\mathcal{P}\end{align*}. We focus on three natural target properties for Maker's graph, namely being k ‐vertex‐connected, admitting a perfect matching, and being Hamiltonian. We prove the following optimal hitting time results: with high probability Maker wins the k ‐vertex connectivity game exactly at the time the random graph process first reaches minimum degree 2k; with high probability Maker wins the perfect matching game exactly at the time the random graph process first reaches minimum degree 2; with high probability Maker wins the Hamiltonicity game exactly at the time the random graph process first reaches minimum degree 4. The latter two statements settle conjectures of Stojakovi? and Szabó. We also prove generalizations of the latter two results; these generalizations partially strengthen some known results in the theory of random graphs. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

20.
We study properties of the uniform random intersection graph model G(n,m,d). We find asymptotic estimates on the diameter of the largest connected component of the graph near the phase transition and connectivity thresholds. Moreover we manage to prove an asymptotically tight bound for the connectivity and phase transition thresholds for all possible ranges of d, which has not been obtained before. The main motivation of our research is the usage of the random intersection graph model in the studies of wireless sensor networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号