首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hanzawa Y  Yabe M  Oka Y  Taguchi T 《Organic letters》2002,4(23):4061-4064
The acylzirconocene chloride complex as an acyl group donor reacts with omega-unsaturated alpha,beta-enones and -ynones under Pd-Me(2)Zn(Me(2)AlCl)-catalyzed conditions to give stereoselectively bicyclo[3.3.0] compounds through (i) formation of a Pd(II) intermediate by an oxidative addition of the Pd(0) catalyst to an enone function, (ii) cyclization of the Pd intermediate to an omega-unsaturated group, (iii) an acyl group transfer from zirconium to Pd metal, (iv) reductive elimination of the Pd metal, and (v) intramolecular cis-selective aldol reaction. [reaction: see text]  相似文献   

2.
Visible light irradiation of a reaction mixture of carbonyl-coordinated tetra(2,4,6-trimethyl)phenylporphyrinatoruthenium(II) (Ru(II)TMP(CO)) as a photosensitizer, hexachloroplatinate(IV) as an electron acceptor, and an alkene in alkaline aqueous acetonitrile induces selective epoxidation of the alkene with high quantum yield (Phi = 0.6, selectivity = 94.4% for cyclohexene and Phi = 0.4, selectivity = 99.7% for norbornene) under degassed conditions. The oxygen atom of the epoxide was confirmed to come from a water molecule by an experiment with H(2)(18)O. cis-Stilbene was converted into its epoxide, cis-stilbeneoxide, without forming trans-stilbeneoxide. trans-Stilbene, however, did not exhibit any reactivity. Under neutral conditions, an efficient buildup of the cation radical of Ru(II)TMP(CO) was observed at the early stage of the photoreaction, while an addition of hydroxide ion caused a rapid reaction with the cation radical to promote the reaction with reversion to the starting Ru(II)TMP(CO). A possible involvement of a higher oxidized state of Ru such as Ru(IV), Ru(V), Ru(VI) through a dismutation of the Ru(III) species was excluded by an experiment with Ru(VI)TMP(O)(2). Decarbonylation of the Ru complex was also proven to be invalid. A reaction mechanism involving an electron transfer from the excited triplet state of Ru(II)TMP(CO) to hexachloroplatinate(IV) and subsequent formation of OH(-)-coordinated Ru(III) species, leading to an oxo-ruthenium complex as the key intermediate of the photochemical epoxidation, was postulated.  相似文献   

3.
The ligand substitution reaction of [Co(an)6]2+ (an = acetonitrile) with 1,1,3,3-tetramethylurea (TMU) in the noncoordinating solvent, nitromethane, was spectrophotometrically investigated by titration. The observed spectral changes were analyzed using a model with the four steps of ligand substitution. The component complexes involved in the substitution were found to be 6-coordinate [Co(an)6]2+ and [Co(an)5(tmu)]2+, 5-coordinate [Co(an)3(tmu)2]2+ and [Co(an)2(tmu)3]2+, and 4-coordinate [Co(tmu)4]2+. The logarithmic values of the stepwise equilibrium constant are 2.17 +/- 0.26, 1.06 +/- 0.15, 1.19 +/- 0.06, and -0.4 +/- 0.4 at 25 degrees C. The decrease in the coordination number of the Co(II) ion from 6 to 5 during the formation of [Co(an)3(tmu)2]2+ and from 5 to 4 during the formation of [Co(tmu)4]2+ is ascribed to the steric repulsion between the coordinating bulky TMU molecules.  相似文献   

4.
Chiong Teck Wong 《Tetrahedron》2009,65(36):7491-487
Theoretical calculations were employed to investigate the enantioselectivity of the α,α-diarylprolinol trimethylsilyl ether-catalyzed α-functionalization of aldehydes with various different electrophiles, via an enol intermediate. The reactions investigated were (i) Michael-aldol condensation, (ii) Michael addition, (iii) Mannich reaction, (iv) α-amination of an aldehyde, (v) α-fluorination of an aldehyde, (vi) α-sulfenylation of an aldehyde, and (vii) α-bromination of an aldehyde. In all seven cases, our proposed enol mechanism is able to account for the experimentally observed enantioselectivity of the products. Our calculations strongly suggest that these catalyzed reactions proceed via an enol intermediate and not via an enamine intermediate.  相似文献   

5.
Hydroboration of the electron poor phosphine (1-propenyl)P(C(6)F(5))(2) with Piers' borane [HB(C(6)F(5))(2)] gave the geminal frustrated Lewis pair (C(6)F(5))(2)P-CH(Et)-B(C(6)F(5))(2). It undergoes 1,2-addition reactions to an alkene and an alkyne and to the C=N bond of an isocyanate. With mesityl azide it undergoes a 1,3-addition reaction.  相似文献   

6.
Reaction of TpIr(C(2)H(4))(2) (Tp = tris-pyrazolylborate) with various chelating phosphine ligands has been explored. Reaction with bis-diphenylphosphinoethane leads to complete displacement of the Tp ligand. With bis-diphenylphosphinomethane, an intramolecular proton transfer from the methylene bridge to the iridium center occurs to give an iridium hydride complex formally resulting from oxidative C-H bond activation. Reaction with 2,2-bis(diphenylphosphino)propane (dppip) affords an Ir(I) complex formulated as kappa(2)-TpIr(dppip). Protonation of this Ir(I) complex gives a six coordinate Ir(III) hydride species.  相似文献   

7.
One-electron photooxidations of 5-methyl-2'-deoxycytidine (d(m)C) and 5-trideuteriomethyl-2'-deoxycytidine ([D(3)]d(m)C) by sensitization with anthraquinone (AQ) derivatives were investigated. Photoirradiation of an aerated aqueous solution containing d(m)C and anthraquinone 2-sulfonate (AQS) afforded 5-formyl-2'-deoxycytidine (d(f)C) and 5-hydroxymethyl-2'-deoxycytidine (d(hm)C) in good yield through an initial one-electron oxidation process. The deuterium isotope effect on the AQS-sensitized photooxidation of d(m)C suggests that the rate-determining step in the photosensitized oxidation of d(m)C involves internal transfer of the C5-hydrogen atom of a d(m)C-tetroxide intermediate to produce d(f)C and d(hm)C. In the case of a 5-methylcytosine ((m)C)-containing duplex DNA with an AQ chromophore that is incorporated into the backbone of the DNA strand so as to be immobilized at a specific position, (m)C underwent efficient direct one-electron oxidation by the photoexcited AQ, which resulted in an exclusive DNA strand cleavage at the target (m)C site upon hot piperidine treatment. In accordance with the suppression of the strand cleavage at 5-trideuterio-methylcytosine observed in a similar AQ photosensitization, it is suggested that deprotonation at the C5-methyl group of an intermediate (m)C radical cation may occur as a key elementary reaction in the photooxidative strand cleavage at the (m)C site. Incorporation of an AQ sensitizer into the interior of a strand of the duplex enhanced the one-electron photooxidation of (m)C, presumably because of an increased intersystem crossing efficiency that may lead to efficient piperidine-induced strand cleavage at an (m)C site in a DNA duplex.  相似文献   

8.
A total synthesis of dactylolide (1) is described. The key feature involves the Ti(IV)-mediated coupling of structurally complex "Sharpless epoxides" and carboxylic acids in either an intramolecular (macrolactonization) or an intermolecular mode. Other notable aspects include a proton-catalyzed, cis-selective construction of the 4-methylenetetrahydropyran ring; a selective oxidation of an allylic alcohol in the presence of a 1,2-diol by an oxoammonium ion; an efficient ring-closing metathesis reaction of an in situ (bis-TMS) protected alpha,omega-diene-vic-diol; and an aluminum-mediated aza-aldol reaction of a primary amide to 1 to construct the acyclic carbinolamide in zampanolide.  相似文献   

9.
江腾  马万福  谢楠  周平 《物理化学学报》2011,27(10):2291-2296
用紫外-可见(UV-Vis)吸收光谱和1H核磁共振(NMR)谱研究了茶多酚类衍生物表没食子儿茶素没食子酸酯(EGCG)与Zn(Ⅱ)离子的相互作用,并用密度泛函理论(DFT)计算了EGCG与Zn(Ⅱ)离子络合前后的空间结构及其紫外和核磁共振谱.实验与理论研究结果表明:EGCG主要构象是其芳香B环以e键(平伏键)及芳香D环以a键(直立键)形式共同与C环链接.EGCG通过其芳香D环上酚羟基与Zn(Ⅱ)离子相互作用,生成稳定的Zn(Ⅱ)与EGCG摩尔比为1:1的Zn(Ⅱ)-EGCG四面体络合物.  相似文献   

10.
Iron(II) tris(2-pyridylthio)methanido (1) containing an Fe-C bond, obtained from the reaction of tris(2-pyridylthio)methane (HL(1)) and iron(II) triflate, reacts with protic acid to generate iron(II) bis(2-pyridylthio)carbene (1a). The carbene complex is converted to an iron(II) complex (2) of the 1-[bis(2-pyridylthio)methyl]pyridine-2-thione ligand (L(3)) upon treatment with a base. Complex 2 reversibly transforms to 1a in the presence of an acid. During the transformation of 1 to 2, a novel rearrangement of L(1) to L(3) takes place. The iron(II) complexes are reactive toward dioxygen to form the corresponding iron(III) complexes.  相似文献   

11.
The binding of copper(II) to apoazurin has been probed by isothermal titration calorimetry in cholamine buffer at pH 7.0. The standard enthalpy change was determined to be -10.0 +/- 1.4 kcal/mol. Each calorimetric trace reveals an initial exothermic phase followed by an endothermic phase. The calorimetric data could be fit to a kinetic model involving a bimolecular combination of copper(II) and apoazurin in an exothermic process (k = 2 +/-1 x 103 M-1 s-1, DeltaH degrees = -19 +/- 3 kcal/mol) to form an intermediate that spontaneously converts to Cu(II)-azurin in an endothermic process (k = 0.024 +/- 0.01 s-1, DeltaH degrees = +9 +/- 3 kcal/mol). These data suggest that copper(II) first combines with apoazurin in an irreversible process to form an intermediate that converts to copper(II)-azurin in a process driven by the release of water. The overall standard free energy of copper(II) binding to apoazurin is estimated to be -18.8 kcal/mol.  相似文献   

12.
The synthesis and structures of chiral N-heterocyclic carbene (NHC)-N-donor complexes of silver(I) and palladium(II) are reported. The X-ray structure of an NHC-imine silver(I) complex [((nPr)CN(CHPh))AgBr](2) exhibits an Ag(2)Br(2) dimer motif where the imine group is not coordinated to the silver atom. Reaction between 2 and [PdCl(2)(MeCN)(2)] gives the palladium(II) complex [(kappa(2)-(nPr)CN(CHPh))PdCl(2)](3) that contains a chelating NHC-imine ligand as shown by single-crystal X-ray diffraction. Slow hydrolysis of related complexes [(kappa(2)-(nPr)CN(CHPh))PdCl(2)](3) and [(kappa(2)-((Ph)(2)CH)CN(CHPh))PdCl(2)](4) using triethylammonium chloride and water lead to the precipitation of single crystals of insoluble NHC-amino palladium(II) complexes [(kappa(2)-(nPr)CN(H(2)))PdCl(2)](6) and [(kappa(2)-((Ph)(2)CH)CN(H(2)))PdCl(2)](7), respectively. In the solid state, complexes 6 and 7 both exhibit intermolecular hydrogen bonding between chlorine and an amino-hydrogen atom resulting in an infinite chain structure. Substitution of an amino hydrogen for an ethyl group gives the soluble complex [(kappa(2)-(iPr)CN((H)Et))PdCl(2)](12). Reaction between two equivalents of 2 and [PdCl(2)(MeCN)(2)] gives the di-NHC complex [(kappa(1)-(nPr)CN(CHPh))(2)PdCl(2)](5) that does not contain a coordinated imine as shown by single crystal X-ray diffraction. Conproportionation between 5 and an equivalent of [PdCl(2)(MeCN)(2)] to does not occur at temperatures up to 100 degrees C in CD(3)CN.  相似文献   

13.
Acylzirconocene chloride complex as an acyl group donor reacts with ω-carbonyl α,β-enones or with bis-enones to give carbocyclic compounds under 10 mol% Pd(OAc)2-catalyzed conditions, and each reaction was accelerated by the addition of a stoichiometric amount of Me2Zn. The formation of the carbocycles from ω-carbonyl α,β-enones was considered to be a result of a series of reactions; (i) the formation of Pd(II)-intermediate by an electron transfer from the Pd(0)-catalyst to an α,β-enone function in an initial step, (ii) an acyl group transfer from the acylzirconocene complex to the Pd(II)-intermediate (transmetalation), (iii) the reductive elimination of Pd(0)-metal, and (iv) an intramolecular addition of metal enolate to ω-carbonyl group. On the other hand, the reaction of bis-enones with acylzirconocene chloride under the identical condition afforded reductive cyclization product, bicyclo[3.3.0] octane derivatives, in which acyl group from acylzirconocene complex was not incorporated.  相似文献   

14.
We have successfully synthesised and characterised a number of eta(1)- and eta(3)-triazacyclononane Rh(I) and Rh(III) derivatives. By using different reaction conditions, we have been able to convert one of the eta(1)-triazacyclononane complexes to an eta(3)-derivative. Also, we have observed a rare example of an addition of an organic fragment to a metal bound ligand to form a quaternary carbon centre.  相似文献   

15.
Semiclassical dynamics simulation is used to study dimerization of two stacked cytosine molecules following excitation by ultrashort laser pulses (25 fs fwhm, Gaussian, 4.1 eV photon energy). The initial excited state was found to form an ultrashort exciton state, which eventually leads to the formation of an excimer state by charge transfer. When the interbase distance, defined as an average value of C(5)-C(5)' and C(6)-C(6)', becomes less than 3 ?, charge recombination occurs due to strong intermolecular interaction, eventually leading to an avoided crossing within 20-30 fs. Geometries at the avoided crossing, with average intermolecular distance of about 2.1 ?, are in accord with CASSCF/CASPT2 calculations. Results indicate that the C(2)-N(1)-C(6)-C(5) and C(2)'-N(1)'-C(6)'-C(5)' dihedral angles' bending vibrations play a significant role in the vibronic coupling between the HOMO and LUMO, which leads to a nonadiabatic transition to the electronic ground state.  相似文献   

16.
The development of a palladium-catalyzed decarboxylative coupling reaction of arene carboxylates with olefinic substrates is described. The optimized procedure for decarboxylative palladation employs Pd(O2CCF3)2 as catalyst (0.2 equiv) in the presence of Ag2CO3 (3 equiv) in the solvent 5% DMSO-DMF and proceeds at temperatures of 80-120 degrees C with a wide range of arene carboxylates and alkenes as substrates. The process is proposed to proceed by an initial Ar-SE reaction involving ipso attack of an electrophilic Pd(II) intermediate on an arene carboxylate to form an arylpalladium(II) species with loss of carbon dioxide. This intermediate is then proposed to react with an olefinic substrate by steps common to the Heck coupling process. Reoxidation of the liberated Pd(0) in situ is proposed to establish the catalytic cycle.  相似文献   

17.
Xiuhui Lu  Xin Che  Leyi Shi  Junfeng Han 《中国化学》2010,28(10):1803-1809
The mechanism of the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (1) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 117.5 kJ/mol; (2) intermediate (INT1) then isomerizes to a four‐membered ring compound (P2) via a transition state (TS2) with an energy barrier of 25.4 kJ/mol; (3) four‐membered ring compound (P2) further reacts with formaldehyde (R2) to form an intermediate (INT3), which is also a barrier‐free exothermic reaction of 19.6 kJ/mol; (4) intermediate (INT3) isomerizes to a germanic bis‐heterocyclic product (P3) via a transition state (TS3) with an energy barrier of 5.8 kJ/mol. Second dominant reaction pathway is as follows: (1) the two reactants (R1, R2) first form an intermediate (INT4) through a barrier‐free exothermic reaction of 197.3 kJ/mol; (2) intermediate (INT4) further reacts with formaldehyde (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 141.3 kJ/mol; (3) intermediate (INT5) then isomerizes to a germanic bis‐heterocyclic product (P5) via a transition state (TS5) with an energy barrier of 36.7 kJ/mol.  相似文献   

18.
Cationic Rh(III) complex [Cp(PMe(3))Rh(SiPh(3))(CH(2)Cl(2))]BAr(4)' (1) activates the carbon-carbon bond of aryl and alkyl cyanides (R-CN, where R = Ph, (4-(CF(3))C(6)H(4)), (4-(OMe)C(6)H(4)), Me, (i)Pr, (t)Bu) to produce complexes of the general formula [Cp*(PMe(3))Rh(R)(CNSiPh(3))]BAr(4)'. With the exception of the (t)BuCN case, every reaction proceeds at room temperature (t(1/2) < 1 h for aryl cyanides, t(1/2) < 14 h for alkyl cyanides). A general mechanism is presented on the basis of (1) an X-ray crystal structure determination of an intermediate isolated from the reaction involving 4-methoxybenzonitrile and (2) kinetic studies performed on the C-C bond cleavage of para-substituted aryl cyanides. Initial formation of an eta(1)-nitrile species is observed, followed by conversion to an eta(2)-iminoacyl intermediate, which was observed to undergo migration of R (aryl or alkyl) to rhodium to form the product [Cp*(PMe(3))Rh(R)(CNSiPh(3))]BAr(4)'.  相似文献   

19.
We suggest a possible mechanism of how 8-aminoquinolines (8-AQ's) cause hemotoxicity by oxidizing hemoglobin to methemoglobin. In our DFT calculations, we found that 5-hydroxyprimaquine is able to donate an electron to O(2) to facilitate its conversion to H(2)O(2). Meanwhile, Fe(II) is oxidized to Fe(III) and methemoglobin is formed. In this mechanism, the 8-AQ drug plays a similar role as that of H(4)B in nitric oxide synthase. Furthermore, our study offers an approach to inform the design of less toxic antimalarial drugs.  相似文献   

20.
Treatment of lithium iminophosphonamide with AlCl3 in Et2O led to the formation of an aluminum(III) dichloride complex as colorless crystals. The substitution reactions of aluminum(III) dichloride stabilized by an iminophosphon- amide ligand with N- and Fe-nucleophiles gave the corresponding compounds of aluminum(III) monochloride. The reaction of the aluminum(III) dichloride complex with CpNa proceeded slowly at room temperature to form an aluminum(III) monochloride complex bearing an η1(σ)-bonded cyclopentadienyl ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号