首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Backscattering of light by hexagonal ice columns and plates has been calculated by means of a ray-tracing code. It is shown that backscattering by the hexagonal ice cylinders at their arbitrary orientations is caused by a peculiar corner-reflector effect. A gigantic peak of backscattering is found at the angle of about 32.5° between the principal axis of a particle and the incidence direction for both hexagonal ice columns and plates. This peak is explained by multiple total internal reflections inside the crystals that take place for a part of incident rays. The obtained results on backscattering efficiency allow one to calculate backscattering by an ensemble of the hexagonal ice cylinders of various sizes, shapes and orientations. Slant lidar remote sensing of cirrus clouds for discrimination between aligned columns and plates is suggested as an application of the results obtained.  相似文献   

2.
We use the T-matrix method to compute the scattering matrix for randomly oriented circular ice cylinders with diameter-to-length ratios 1 and 20 and surface-equivalent-sphere size parameters up to 12. We show that wavelength-sized, sharp-edged ice plates with extreme diameter-to-length ratios possess the same scattering properties as smooth platelike spheroids: their phase functions are similar to those of surface-equivalent compact particles, whereas all other elements of the scattering matrix are typical of Rayleigh scattering.  相似文献   

3.
Seven symmetry relations, with a wide range of validity, are presented for the phase matrix of horizontally oriented particles. Three of these relations constitute a fundamental basis from which four others can be derived by making combinations. All seven relations can be used for many types of particles, including hexagonal plates and columns as well as spheroids, cylinders and cubes. Some applications are also pointed out.  相似文献   

4.
This paper presents polarized signature due to oriented circular columnar and planar ice crystals at millimeter/submillimeter (mm/sub-mm) waveband. DDSCAT 6.1 and RT4 code package are employed for scattering properties and radiative transfer simulations, respectively, at the three estimated window frequencies (150, 220 and 340 GHz) of FengYun-4 (FY-4). We use empirical formulas to describe realistic sizes of planar and columnar particles and assume that ice particles are in Gamma-size distribution in this study. A “resonance” feature of polarized signals as a function of median mass diameter is notably found for horizontally oriented columns and blunt plates at the frequency of 340 GHz; however, there is no promising resonance characteristic for horizontally aligned plates with empirical sizes at the three window channels of FY-4. The position of the resonance peak is related to particle aspect ratio, frequency and ice water path (IWP), and it moves to a shorter median mass diameter when the particle aspect ratio decreases or IWP in clouds increases. Considering that particle canting angle distribution (Gaussian distribution in this study), polarization difference, as well as the brightness temperature difference between clear and cloudy sky, decreases rapidly when particles gradually change from horizontally oriented to randomly oriented. The upwelling brightness temperature is insensitive to particle size and shape but sensitive to particle orientation, the difference of brightness temperature between horizontal and random orientation up to 6 K, whereas polarized signature is quite sensitive to particle microphysics as well as orientation; polarized measurements thereby could benefit retrieval of cloud microphysical parameters.  相似文献   

5.
Scattering matrices for horizontally oriented ice crystals are calculated with a code based on the geometric optics. The main physical regularities inherent to the scattering matrices are discussed. Degree of polarization of the scattered light is shown to be a qualitative criterion of number of photon trajectories that contribute effectively to the scattered light. The inverse scattering problem of retrieving aspect ratios of the horizontally oriented hexagonal ice plates from polarization of the scattered light in the bistatic sounding scheme has been proposed and discussed.  相似文献   

6.
We investigate to what extent the full Stokes scattering matrix of an ensemble of wavelength-sized particles with complex shapes can be modeled by employing an ensemble of simple model shapes, such as spheres, spheroids, and circular cylinders. We also examine to what extent such a simple-shape particle model can be used to retrieve meaningful shape information about the complex-shaped particle ensemble. More specifically, we compute the Stokes scattering matrix for ensembles of randomly oriented particles having several polyhedral prism geometries of different sizes and shape parameters. These ensembles serve as proxies for size-shape mixtures of particles containing several different shapes of higher geometrical complexity than the simple-shaped model particles we employ. We find that the phase function of the complex-shaped particle ensemble can be accurately modeled with a size distribution of volume-equivalent spheres. The diagonal elements of the scattering matrix are accurately reproduced with a size-shape mixture of spheroids. A model based on circular cylinders accurately fits the full scattering matrix including the off-diagonal elements. However, the modeling results provide us with only a rough estimate of the effective shape parameter of the complex-shaped particle ensemble to be modeled. They do not allow us to infer detailed information about the shape distribution of the complex-shaped particle ensemble.  相似文献   

7.
在不规则衍射理论的基础上,分析了从可见光到近红外波段冰晶粒子的光散射特性。计算了粒子尺度为20μm,50μm,80μm的五种典型冰晶粒子的消光效率因子和吸收效率因子。最后,为了评估不规则衍射理论的精确性,与有限时域差分法和几何光学法进行了比较。  相似文献   

8.
A new physical-geometric optics hybrid (PGOH) method is developed to compute the scattering and absorption properties of ice particles. This method is suitable for studying the optical properties of ice particles with arbitrary orientations, complex refractive indices (i.e., particles with significant absorption), and size parameters (proportional to the ratio of particle size to incident wavelength) larger than ∼20, and includes consideration of the edge effects necessary for accurate determination of the extinction and absorption efficiencies. Light beams with polygon-shaped cross sections propagate within a particle and are traced by using a beam-splitting technique. The electric field associated with a beam is calculated using a beam-tracing process in which the amplitude and phase variations over the wavefront of the localized wave associated with the beam are considered analytically. The geometric-optics near field for each ray is obtained, and the single-scattering properties of particles are calculated from electromagnetic integral equations. The present method does not assume additional physical simplifications and approximations, except for geometric optics principles, and may be regarded as a “benchmark” within the framework of the geometric optics approach. The computational time is on the order of seconds for a single-orientation simulation and is essentially independent of the size parameter. The single-scattering properties of oriented hexagonal ice particles (ice plates and hexagons) are presented. The numerical results are compared with those computed from the discrete-dipole-approximation (DDA) method.  相似文献   

9.
A method to approximate azimuthally resolved light scattering patterns and phase functions due to diffraction and external reflection by strongly absorbing facetted particles is demonstrated for a cube and compared with results from an exact method, T-matrix. A phase function averaged over a range of orientations of a strongly absorbing hexagonal column of aspect ratio unity has been calculated and tested against Discrete Dipole Approximation (DDA) results for a size parameter of 50.  相似文献   

10.
Atmospheric radiation in the infrared (IR) 8–13 μm spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time-domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 μm. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 and 10,000 μm over the wavelengths ranging from 8 to 13 μm. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 μm. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8–13 μm spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, the extinction and absorption efficiencies are computed for hexagonal ice crystals with sizes ranging from 1 to 10,000 μm at 12 wavelengths between 8 and 13 μm.

Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size distributions obtained from various field campaigns for midlatitude and tropical cirrus cloud systems. Ice crystals are assumed to be hexagonal columns randomly oriented in space. The bulk scattering properties are parameterized through the use of second-order polynomial functions for the extinction efficiency and the single-scattering albedo and a power-law expression for the asymmetry parameter. We note that the volume-normalized extinction coefficient can be separated into two parts: one is inversely proportional to effective size and is independent of wavelength, and the other is the wavelength-dependent effective extinction efficiency. Unlike conventional parameterization efforts, the present parameterization scheme is more accurate because only the latter part of the volume-normalized extinction coefficient is approximated in terms of an analytical expression. After averaging over size distribution, the single-scattering albedo is shown to decrease with an increase in effective size for wavelengths shorter than 10.0 μm whereas the opposite behavior is observed for longer wavelengths. The variation of the asymmetry parameter as a function of effective size is substantial when the effective size is smaller than 50 μm. For effective sizes larger than 100 μm, the asymmetry parameter approaches its asymptotic value. The results derived in this study can be useful to remote sensing studies of ice clouds involving IR window bands.  相似文献   


11.
The applicability, efficiency, and accuracy of the pseudo-spectral time domain (PSTD) method are investigated with specific emphasis on the computation of the single-scattering properties of homogeneous dielectric particles. By truncating the high spectral terms, the Gibbs phenomenon is eliminated, and, consequently, the applicability of the PSTD is enhanced. The PSTD simulations for ice spheres, with moderate refractive indices and size parameters up to 200, are compared with the exact Lorenz–Mie solutions at three wavelengths. In addition, the comparison is extended to a case with an extremely large refractive index (7.150+i2.914) and size parameters up to 40. Furthermore, the single-scattering properties of randomly oriented spheroids and circular cylinders for size parameters up to 150 and 75, respectively, are calculated with the PSTD in comparison with those computed from the T-matrix method. The aspect ratio of the spheroid and the diameter-to-length ratio of the circular cylinder are 0.5 and 1, respectively. The relative errors, given by the PSTD for these randomly oriented non-spherical particles, are smaller than 2% for the extinction efficiencies and asymmetry factors and less than 30% for the phase function. The PSTD is also employed to compute the phase matrices of randomly oriented hexagonal columns with size parameters of 50 and 100. The simulations show the PSTD to be a robust method for simulating the single-scattering properties of particles with small-to-medium size parameters and for a wide range of refractive indices.  相似文献   

12.
Based on extensive T-matrix computations of light scattering by polydispersions of randomly oriented, rotationally symmetric nonspherical particles, we analyze existing lidar observations of polar stratospheric clouds (PSCs) and derive several constraints on PSC particle microphysical properties. We show that sharp-edged nonspherical particles (finite circular cylinders) exhibit less variability of lidar backscattering characteristics with particle size and aspect ratio than particles with smooth surfaces (spheroids). For PSC particles significantly smaller than the wavelength, the backscatter color index and the depolarization color index β are essentially shape independent. Observations for type Ia PSCs can be reproduced by spheroids with aspect ratios larger than 1.2, oblate cylinders with diameter-to-length ratios greater than 1.6, and prolate cylinders with length-to-diameter ratios greater than 1.4. The effective equal-volume-sphere radius for type Ia PSCs is about 0.8 μm or larger. Type Ib PSCs are likely to be composed of spheres or nearly spherical particles with effective radii smaller than 0.8 μm. Observations for type II PSCs are consistent with large ice crystals (effective radius greater than 1 μm) modeled as cylinders or prolate spheroids.  相似文献   

13.
A 3D implementation of a new model of light scattering applicable to dielectric faceted objects is introduced. The model combines standard geometric optics with diffraction on individual facets. It can be applied to any faceted geometry. The model adds no significant computational overheads to classical geometric optics yet provides much improved results. Initial results for long hexagonal columns are compared to SVM and appear favourable. 2D scattering patterns are calculated for a hexagonal column in a fixed orientation and compared to those created by ice analogue crystals in the laboratory with close agreement. The comparison includes the observation of a guided wave propagating along the length of the column. The new model is then applied to a selection of geometries to illustrate how it could be used to aid particle characterization, particularly in the case of cirrus ice.  相似文献   

14.
The goal of this study is to explore the influence of ice particle habit (or shape) and surface roughness on the scattering phase matrix. As an example, reported here are the results for two wavelengths: 0.67 and 1.61 μm. For this effort, a database of single-scattering properties has been computed for a set of habits including hexagonal plates, hollow and solid columns, hollow and solid 3D bullet rosettes, droxtals, aggregates of solid columns, and aggregates of plates. The database provides properties for each of the habits at 101 wavelengths between 0.45 and 2.24 μm for smooth, moderately roughened, and severely roughened particles. At each wavelength, the scattering properties are provided at 233 discrete particle diameters ranging from 2 to 10,000 μm. A single particle size distribution from a very cold ice cloud sampled during the CRYSTAL-FACE field campaign (Tcld=–76 °C) is used to illustrate the influence of habit and roughness on the phase matrix. In all, four different habit mixtures are evaluated. The nonzero elements of the phase matrix are shown to be quite sensitive to the assumed habit, particularly in the case of ?P12/P11 that is associated with the degree of linear polarization of scattered radiation. Surface roughness is shown to smooth out maxima in the scattering phase function and in the other elements of the phase matrix, consistent with other studies. To compare with the theoretical simulations of the phase matrix for smooth and roughened particles, a full year of cloud-aerosol lidar with orthogonal polarization (CALIOP) data from 2008 is analyzed to provide global statistics on the values of P11 and P22/P11 in the backscattering direction. In a comparison of two of the habit mixtures (one used for MODIS Collection 5 and another that incorporates new habits including hollow bullet rosettes and aggregates of plates) with the CALIOP data, the values for P11 are higher regardless of the degree of particle surface roughness, and the values for P22/P11 are lower than those for CALIOP. Further investigation is warranted to better understand this discrepancy.  相似文献   

15.
Borovoi A  Kustova N 《Optics letters》2006,31(11):1747-1749
Within the geometric optics approximation, the phase functions of randomly oriented ice crystals are calculated as a series relative to multiplicity of internal collisions of light inside the particles. In the case of convex crystals, it is shown that the coefficients of the series provide the most information about the crystal shapes, while the angular functions of this series are weakly dependent on the shapes. The prevailing role of the term corresponding to one internal collision is emphasized. Three numbers describing a distribution of the single-collision scattered light among the aureole and halos of 22 degrees and 46 degrees prove to be the basic parameters by which to characterize scattering by hexagonal ice crystals.  相似文献   

16.
In this study, we model single-scattering properties of small cirrus crystals using mixtures of polydisperse, randomly oriented spheroids and cylinders with varying aspect ratios and with a refractive index representative of water ice at a wavelength of 1.88 μm. The Stokes scattering matrix elements averaged over wide shape distributions of spheroids and cylinders are compared with those computed for polydisperse surface-equivalent spheres. The shape-averaged phase function for a mixture of oblate and prolate spheroids is smooth, featureless, and nearly flat at side-scattering angles and closely resembles those typically measured for cirrus. Compared with the ensemble-averaged phase function for spheroids, that for a shape distribution of cylinders shows a relatively deeper minimum at side-scattering angles. This may indicate that light scattering from realistic cirrus crystals can be better represented by a shape mixture of ice spheroids. Interestingly, the single-scattering properties of shape-averaged oblate and prolate cylinders are very similar to those of compact cylinders with a diameter-to-length ratio of unity. The differences in the optical cross sections, single-scattering albedo, and asymmetry parameter between the spherical and the nonspherical particles studied appear to be relatively small. This may suggest that for a given optical thickness, the influence of particle shape on the radiative forcing caused by a cloud composed of small ice crystals can be negligible.  相似文献   

17.
Absorption and extinction properties of the finite hexagonal ice column and hexagonal ice plate in random and preferred orientation are studied at the wavelength of 80 μm using a new implementation of exact T-matrix theory. For the case of random orientation at size parameters around two, it is shown that the hexagonal ice column and hexagonal ice plate absorption resonances are diminished relative to Mie theory, and the same behaviour is also noted for an aggregate particle consisting of eight hexagonal elements. The absorption properties of the aggregate particle have been calculated using the finite-difference time-domain method. It is also shown that extinction and absorption solutions for the hexagonal ice column and hexagonal ice plate can differ significantly if incidence occurs perpendicular or parallel to the cylindrical axis of the hexagon. For the case of perpendicular incidence on the edge of the hexagon, absorption solutions can exceed those of Mie theory, and for the case of parallel incidence, behaviour of the extinction solutions for hexagonal ice columns and hexagonal ice plates is shown to be similar to previously published work based on the prolate and oblate spheroid. Interference structure, associated with surface waves, is resolved on the hexagonal column extinction solution and the hexagonal plate absorption solution, thereby demonstrating that surface waves can exist on a non-axisymmetric geometry. The usefulness of assuming the hexagonal ice column in retrieval of ice crystal effective size is also investigated using aircraft based radiometric observations of semi-transparent cirrus at the wavelengths of 8.5 and 11 μm.  相似文献   

18.
用射线光学理论计算了具有一定尺度分布的六角冰晶粒子在可见和近红外光谱区一系列波长上(0.2~5μm)的单次散射特性.利用米氏(Mie)理论,计算了与六角冰晶具有相同截面积的球形粒子的单次散射特性.根据辐射传输理论,应用累加法,分别计算了由冰晶粒子和等效球形粒子构成的卷层云的多次散射特性,计算结果表明当入射波长λ≈3.0 μm时,等效球Mie理论可以很好地用于计算卷层云的反射特性,但是当λ<2.8μm时,尤其在可见光区,将引起显著的误差.最后提出了计算冰云光学特性的两种方案.  相似文献   

19.
A geometric-optics surface-wave approach has been developed for the computation of light absorption and scattering by nonspherical particles for application to aggregates and snow grains with external and internal mixing structures. Aggregates with closed- (internal mixing) and open-cell configurations are constructed by means of stochastic procedures using homogeneous and core-shell spheres with smooth or rough surfaces as building blocks. The complex aggregate shape and composition can be accounted for by using the hit-and-miss Monte Carlo geometric photon tracing method. We develop an integral expression for diffraction by randomly oriented aggregates based on Babinet's principle and a photon-number weighted geometric cross section. With reference to surface-wave contributions originally developed for spheres, we introduce a nonspherical correction factor using a non-dimensional volume parameter such that it is 1 for spheres and 0 for elongated particles. The extinction efficiency, single-scattering albedo, and asymmetry factor results for randomly oriented columns and plates compare reasonably well with those determined from the finite-difference time domain (FDTD) and the discrete dipole approximation (DDA) computer codes for size parameters up to about 20. The present theoretical approach covers all size ranges and is particularly attractive from the perspective of efficient light absorption and scattering calculations for complex particle shape and inhomogeneous composition.We show that under the condition of equal volume and mass, the closed-cell configuration has larger absorption than its open-cell counterpart for both ballistic and diffusion-limited aggregates. Because of stronger absorption in the closed-cell case, most of the scattered energy is confined to forward directions, leading to a larger asymmetry factor than the open-cell case. Additionally, light absorption for randomly oriented snowflakes is similar to that of their spherical counterparts under the condition of equal geometrical cross section area for both external and internal mixing states; however, nonspherical snowflakes scatter less light in forward directions than spheres, resulting in a substantial reduction of the asymmetry factor. We further demonstrate that small soot particles on the order of 1 μm internally mixed with snow grains could effectively reduce snow albedo by as much as 5-10%. Indeed, the depositions of black carbon would substantially reduce mountain-snow albedo, which would lead to surface warming and snowmelt, critical to regional climatic surface temperature amplification and feedback.  相似文献   

20.
Angle-dependent light-scattering measurements on single ice analogues crystals are described. Phase functions and degree of linear polarization are measured for electrodynamically levitated crystals. A procedure for randomizing particle orientation during levitation is demonstrated. The dependence of scattering on the shape, complexity and surface roughness of the crystals is examined. The phase functions from complex crystals with smooth surfaces show little dependence on shape. There is close agreement between the measured functions and the analytic phase function for ice clouds. However, rosettes with rough surfaces have qualitatively different phase functions, with raised side and back scattering. The asymmetry parameter is typically about 0.8±0.04 and 0.63±0.05 for smooth and rough crystals, respectively. The 22° halo peak is present for smooth rosettes and aggregates but absent for rough rosettes. Two-dimensional scattering patterns from several crystals in fixed orientations are also shown. The results suggest that it may be possible to use such patterns to discriminate not only between crystals of different shape but also to obtain some information on surface properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号