首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In magnetohydrodynamic flow the viscous friction at the walls can be substantial. The role of viscous friction can be considerably reduced by using a free or a semirestricted flow of the conducting fluid. Nonstationary phenomena in one-dimensional motion of a free plane incompressible fluid flow in a transverse magnetic field are examined. The narrow sides of the flow come into contact with the sectional electrodes connected through external circuits with an active-inductive load. The magnetic Reynolds number and the magnetody-dynamic interaction parameter are assumed to be large. When the electric field due to electromagnetic induction in the channel is much smaller than the field due to the external circuits, the problem can be reduced to the characteristic Cauchy problem for a quasilinear hyperbolic system of first-order equations which can be solved by the method of characteristics using a computer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 34–39, July–August, 1970.  相似文献   

2.
The effects of the magnetic Reynolds number have been examined via the distribution of the magnetic fields induced by the motion of a medium in a rectangular channel with conducting walls in the presence of an inhomogeneous magnetic field; the effects of wall conductivity and geometry of the external field are also examined as regards the distribution of the induced currents, the Joule loss, and the electric and magnetic fields over the cross section. The problem has previously been considered for a channel with insulating walls [1].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 19–27, May–June, 1971.We are indebted to A. B. Vatazhin for his interest.  相似文献   

3.
The flow of a conducting liquid in a channel of rectangular cross section with two walls (parallel to the external magnetic field) having an arbitrary conductivity, the other two being insulators, is considered. The solution of the problem is presented in the form of infinite series. The relationships obtained are used for numerical calculations of the velocity distribution and the distribution of the induced magnetic field over the cross section for several modes of flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkostt i Gaza, No. 5, pp. 46–52, September–October, 1970.  相似文献   

4.
The possibilities of reducing the resistance of pipelines by coating the inner surface with a low-viscosity magnetic fluid, held on the walls by a nonuniform magnetic field, are discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 72–77, September–October, 1989.  相似文献   

5.
The two-dimensional problem of the shape of the free surface of a magnetic fluid in a gravity field, a uniform external magnetic field and the nonuniform field of a magnetized metal wedge is considered. The results of numerically calculating the shape of the free surface of a magnetic liquid drop retained on an inclined plane by the field of a magnetizing wedge are presented. The changes in the shape of the free surface of an infinite volume of magnetic liquid near the edge of a wedge with increase in the external field are investigated. It is shown that for a certain critical field some of the magnetic liquid separates and adheres to the edge of the wedge. Experimental data on the determination of the maximum cross-sectional area of a drop retained by the magnetic field of a wedge and the critical rise of the magnetic liquid relative to the level outside the field are presented. The experimental and theoretical results are in agreement.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 113–119, July–August, 1992.The authors wish to thank V. V. Gogosov for useful discussions and his interest in the work.  相似文献   

6.
A general solution is obtained describing the flow of a conducting liquid in an arbitrary region, which is bounded by nonconducting walls, in the case when it is possible to neglect inertial and viscous forces in comparison with the magnetic field, as well as the induced magnetic field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 144–150, May–June, 1973.  相似文献   

7.
We consider slow steady flows of a conducting fluid at large values of the Hartmann number and small values of the magnetic Reynolds number in an inhomogeneous magnetic field. The general solution is obtained in explicit form for the basic portion (core) of the flow, where the inertia and viscous forces may be neglected. The boundary conditions which this solution must satisfy at the outer edges of the boundary layers which develop at the walls are considered. Possible types of discontinuity surfaces and other singularities in the flow core are examined. An exact solution is obtained for the problem of conducting fluid flow in a tube of arbitrary section in an inhomogeneous magnetic field.The content of this paper is a generalization of some results on flows in a homogeneous magnetic field, obtained in [1–8], to the case of arbitrary flows in an inhomogeneous magnetic field. The author's interest in the problems considered in this study was attracted by a report presented by Professor Shercliff at the Institute of Mechanics, Moscow State University, in May 1967, on the studies of English scientists on conducting fluid flows in a strong uniform magnetic field.  相似文献   

8.
Liquid metal, which is a conductor of electric current, may be used as a lubricant at high temperatures. In recent years considerable attention has been devoted to various problems on the motion of an electrically conducting liquid lubricant in magnetic and electric fields (magnetohydrodynamic theory of lubrication), Thus, for example, references [1–3] study the flow of a conducting lubricating fluid between two plane walls located in a magnetic field. An electrically conducting lubricating layer in a magnetohydrodynamic bearing with cylindrical surfaces is considered in [4–8] and elsewhere.The present work is concerned with the solution of the plane magnetohydrodynamic problem on the pressure distribution of a viscous eletrically conducting liquid in the lubricating layer of a cylindrical bearing along whose axis there is directed a constant magnetic field, while a potential difference from an external source is applied between the journal and the bearing. The radial gap in the bearing is not assumed small, and the problem reduces to two-dimensional system of magnetohydrodynamic equations.An expression is obtained for the additional pressure in the lubricating layer resulting from the electromagnetic forces. In the particular case of a very thin layer the result reported in [4–8] is obtained. SI units are used.  相似文献   

9.
One component of the solution to the problem of flow around a corner within the scope of magnetohydrodynamics, with the interception or stationary reflection of magnetohydrodynamic shock waves, and also steady-state problems comprising an ionizing shock wave, is the steady-state solution of the equations of magnetohydrodynamics, independent of length but depending on a combination of space variables, for example, on the angle. The flows described by these solutions are called stationary simple waves; they were considered for the first time in [1], where the behavior of the flow was investigated in stationary rotary simple waves, in which no change of density occurs. For a magnetic wave, of parallel velocity, the first integrals were found and the solution was reduced to a quadrature. The investigations and the applications of the solutions obtained for a qualitative construction of the problems of streamline flow were continued in [2–8]. In particular, problems were solved concerning flow around thin bodies of a conducting ideal gas. The general solution of the problem of streamline flow or the intersection of shock waves was not found because stationary simple waves with the magnetic field not parallel to the flow velocity were not investigated. The necessity for the calculation of such a flow may arise during the interpretation of the experimental results [9] in relation to the flow of an ionized gas. In the present paper, we consider stationary simple waves with the magnetic field not parallel to the flow velocity. A system of three nonlinear differential equations, describing fast and slow simple waves, is investigated qualitatively. On the basis of the pattern constructed of the behavior of the integral curves, the change of density, magnetic field, and velocity are found and a classification of the waves is undertaken, according to the nature of the change in their physical quantities. The relation between waves with outgoing and incoming characteristics is explained. A qualitative difference is discovered for the flow investigated from the flow in a magnetic field parallel to the flow velocity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 130–138, September–October, 1976.The author thanks A. A. Barmin and A. G. Kulikovskii for constant interest in the work and for valuable advice.  相似文献   

10.
Within the framework of the linear theory, a study was made of the hydrodynamic stability of the Couette-Poiseuille flow of a viscous conducting fluid in a transverse magnetic field. The total spectrum of small perturbations was studied for characteristic Hartmann numbers. A classification of perturbations was made in accordance with the behavior of their phase velocity with large wave numbers. Dependences of the critical Reynolds number and of the critical wave number on a parameter characterizing the relationship between the parts of the flow, determined by the motion of plates and by the pressure gradient, were obtained. The character of the asymptotic dependences at large Hartmann numbers was clarified. The article gives an example of a neutral curve formed by two branches of the neutral fluctuations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 11–17, November–December, 1970.The author thanks M. A. Gol'dshtik for his interest in the work, V. A. Sapozhnikov for his useful observations, and V. N. Shtern for his help in the work and for his valuable remarks.  相似文献   

11.
The special features of the distribution of the magnetic field in the photosphere of the Sun and the experimental discovery of waves which propagate along magnetic tubes in the solar atmosphere have brought about the publication recently of a large number of articles which study the wave-conducting properties of media with a magnetic structure. One of the simplest cases was that of a plane magnetic layer, which was studied in detail in the linear approximation [1–3]. Starting from the dispersion properties of such a structure, [4] indicates the possibility of the existence in it of solitons in the approximation of waves of low amplitude which are long in relation to the layer. The present study has used the method of different-scale expansions to obtain the Schrödinger equation describing the propagation of nonlinear modulations of a symmetric harmonic mode over a plane magnetic layer in an incompressible fluid. A similar equation has been deduced, for example, for waves in water [5–9].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, 164–168, March–April, 1985.The author wishes to thank M. S. Ruderman for formulating the problem and for useful discussions, and V. B. Baranov for his attention to the study.  相似文献   

12.
During the motion of a partially ionized gas in magnetohydrodynamic channels the distribution of the electrical conductivity is usually inhomogeneous due to the cooling of the plasma near the electrode walls. In Hall-type MHD generators with electrodes short-circuited in the transverse cross section of the channel the development of inhomogeneities results in a decrease of the efficiency of the MHD converter [1]. A two-dimensional electric field develops in the transverse section. Numerical computations of this effect for channels of rectangular cross section have been done in [2, 3], At the same time it is advisable to construct analytic solutions of model problems on the potential distribution in Hall channels, which would permit a qualitative analysis of the effect of the inhomogeneous conductivity on local and integral characteristics of the generators. In the present work an exact solution of the transverse two-dimensional problem is given for the case of a channel with elliptical cross section stretched along the magnetic field. The parametric model of the distribution of the electrical conductivity of boundary layer type has been used for obtaining the solution. The dependences of the electric field and the current and also of the integral electrical characteristics of the generator on the inhomogeneity parameters are analyzed.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 3–10, January–February, 1973.  相似文献   

13.
Moskowitz and Rosensweig [1] describe the drag of a magnetic liquid — a colloidal suspension of ferromagnetic single-domain particles in a liquid carrier — by a rotating magnetic field. Various hydrodynamic models have been proposed [2, 3] to describe the macroscopic behavior of magnetic suspensions. In the model constructed in [2] it was assumed that the intensity of magnetization is always directed along the field so that the body torque is zero. Therefore, this model cannot account for the phenomenon under consideration. We make a number of simplifying assumptions to discuss the steady laminar flow of an incompressible viscous magnetizable liquid with internal rotation of particles moving in an infinitely long cylindrical container in a rotating magnetic field. The physical mechanism setting the liquid in motion is discussed. The importance of unsymmetric stresses and the phenomenon of relaxation of magnetization are emphasized. The solution obtained below is also a solution of the problem of the rotation of a polarizable liquid in a rotating electric field according to the model in [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 40–43, July–August, 1970.  相似文献   

14.
We study within the framework of linear theory the stability of plane-parallel flows of a viscous, electrically conducting fluid in a transverse magnetic field. The magnetic Reynolds numbers are assumed small. The critical Reynolds number as a function of the Hartmann number is obtained over the entire range of variation of the latter. The small perturbation spectrum is studied in detail on the example of Hartmann flow. Neutral curves are constructed for symmetric and antisymmetric disturbances. The destablizing effect of a magnetic field is studied in the case of modified Couette flow. The results obtained agree with the calculations of Lock and Kakutani (where they meet) and are at variance with the results of Pavlov.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 3, pp. 127–131, May–June, 1970.The authors wish to thank M. A. Gol'dshtik for his interest in this study.  相似文献   

15.
In the hydrodynamics of a Newtonian fluid, nonlinear effects are connected only with the presence of convective derivatives in the equations and therefore disappear when plane-parallel flows are considered. Non-Newtonian effects are usually taken into account either phenomenologically in the expression for the stress tensor or by explicitly considering additional degrees of freedom. A theory of the effective viscosity of a magnetic fluid is constructed in [1] by regarding a magnetic fluid as a medium with internal rotation. It was shown that the flow of fluid in a magnetic field is non-Newtonian. Later, many authors (see, for example, [2, 3]) studied one- and two-dimensional flows under the influence of a pressure difference. However, the study was usually limited to continuous and smooth solutions. In the present work, we study the plane-parallel flow of a magnetic fluid in a homogeneous magnetic field under the influence of a longitudinal pressure gradient. We also consider discontinuous solutions. It is shown that for large longitudinal pressure gradients and sufficiently great intensities of the magnetic field, the problem has an infinite number of steady solutions which differ in the number and position of discontinuities of the magnetization and the associated abrupt changes in the velocity profile. Steady regimes and their stability are studied numerically with allowance for weak diffusion of magnetization and internal angular momentum. It is shown that the degeneracy is then lifted; however, in a certain region of parameters several stable steady regimes still exist.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 57–64, November–December, 1984.The authors would like to thank M. I. Shliomis for his constant interest in this work.  相似文献   

16.
The problem of the circulating flow of a nonisothermal magnetic fluid in a long vertical cylinder placed in a rotating magnetic field is solved in the weak vorticity approximation.Perm'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 18–22, January–February, 1996.  相似文献   

17.
Numerical computations and experiments were carried out for a buoyant flow of liquid metal (mercury in the experiments) in a long vertical enclosure of square cross-section, in the presence of a uniform horizontal magnetic field. A strong emphasis is put on the case of a magnetic field perpendicular to the applied temperature gradient for two reasons: (1) the MHD damping is smaller than with any other orientation, and (2) the quasi-two-dimensionality of the flow in this case yields a quite efficient velocity measurement technique. The enclosure is heated by a thermally controlled flow of water from one of the vertical walls and cooled by a similar technique from the facing wall. Those two walls are good thermal conductors (thick copper plates in the experiments), whereas the four other walls are thermally insulating. All walls are electrically insulated from the fluid. In this paper, as well as in the companion paper by Tagawa et al. (Eur. J. Mech. B Fluids 21 (4) (2002) 383–398), we model analytically the Hartmann layers present along the walls perpendicular to the magnetic field. This modeling, which yields boundary conditions for the core flow without any meshing of the thin layers, is quite accurate when Hartmann layers are stable. The numerical results are in fairly good agreement with the experimental data. They namely reveal how the heat flux and the fluid flow organization depend on the magnetic field.  相似文献   

18.
Integral parameters that characterize reversible and irreversible changes in the flux of the total pressure in channels with perforated walls are introduced. An experimental investigation was made of subsonic gas flow in curvilinear channels of rectangular cross section in the presence of suction of gas from a separation region of the flow formed on an internal (convex) strongly curved wall of the channel. The optimal position of the suction slit was determined and it was shown to be possible to reduce appreciably the loss in the channel and improve its gas-dynamic characteristics. Two-dimensional turbulent flow of an incompressible fluid in curvilinear channels in the presence of suction was simulated numerically. The mathematical model is based on the complete system of Navier-Stokes equations, additional differential equations for the energy of the turbulence and the rate of its dissipation, special correction equations to take into account the curvature of the streamlines, and model boundary conditions for the sections of the walls through which the suction of the fluid takes place.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza, No. 4, pp. 72–80, July–August, 1984.  相似文献   

19.
A numerical solution is given for the problem of the flow of an electrically conducting liquid in a duct of rectangular cross section whose walls in the direction at right angles to the applied magnetic field are nonconducting, whereas those parallel to the field are perfect conductors. It is assumed that all the quantities except the pressure are independent of the coordinate along the axis of the duct, that the applied magnetic field is homogeneous, and that the induced current is diverted into an external circuit. The total current in the external circuit and the difference of the potentials of the conducting walls are found as functions of the external load, the Hartmann number, and the ratio of the lengths of the sides of the duct. It should be noted that problems of this kind have already been considered on many occasions and by many different approximate methods. The most complete bibliography on this question can be found in [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 41–45, September–October, 1970.  相似文献   

20.
The plane two-layer flow of viscous incompressible fluids with differentmagnetic properties between two horizontal rigid planes in a nonuniform traveling magnetic field is investigated. An arbitrary nonuniform periodic traveling magnetic field generates wavelike changes in the interface between the media and fluid flows with nonzero flow rates. From the given magnetic field the interface shape and the velocities, pressures and mean flow rates of the fluids are calculated. The cases of a cosine magnetic force and of the magnetic field created by ferromagnetic cylinders moving in a uniform magnetic field are considered. The effect of various parameters on the mean flow rates of the fluids is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号