首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of Cheaters in Vector Space Secret Sharing Schemes   总被引:23,自引:0,他引:23  
A perfect secret sharing scheme is a method of distributing shares of a secret among a set P of participants in such a way that only qualified subsets of P can reconstruct the secret from their shares and non-qualified subsets have absolutely no information on the value of the secret. In a secret sharing scheme, some participants could lie about the value of their shares in order to obtain some illicit benefit. Therefore, the security against cheating is an important issue in the implementation of secret sharing schemes. Two new secret sharing schemes in which cheaters are detected with high probability are presented in this paper. The first one has information rate equal to 1/2 and can be implemented not only in threshold structures, but in a more general family of access structures. We prove that the information rate of this scheme is almost optimal among all schemes with the same security requirements. The second scheme we propose is a threshold scheme in which cheaters are detected with high probability even if they know the secret. The information rate is in this case 1/3 In both schemes, the probability of cheating successfully is a fixed value that is determined by the size of the secret.  相似文献   

2.
A New Approach for Visual Cryptography   总被引:1,自引:0,他引:1  
Visual cryptography is to encrypt a secret image into some shares (transparencies) such that any qualified subset of the shares can recover the secret visually. The conventional definition requires that the revealed secret images are always darker than the backgrounds. We observed that this is not necessary, in particular, for the textual images.In this paper, we proposed an improved definition for visual cryptography based on our observation, in which the revealed images may be darker or lighter than the backgrounds. We studied properties and obtained bounds for visual cryptography schemes based on the new definition. We proposed methods to construct visual cryptography schemes based on the new definition. The experiments showed that visual cryptography schemes based on our definition indeed have better pixel expansion in average.  相似文献   

3.
A secret sharing scheme is a cryptographic protocol by means of which a dealer shares a secret among a set of participants in such a way that it can be subsequently reconstructed by certain qualified subsets. The setting we consider is the following: in a first phase, the dealer gives in a secure way a piece of information, called a share, to each participant. Then, participants belonging to a qualified subset send in a secure way their shares to a trusted party, referred to as a combiner, who computes the secret and sends it back to the participants.Cheating-immune secret sharing schemes are secret sharing schemes in the above setting where dishonest participants, during the reconstruction phase, have no advantage in sending incorrect shares to the combiner (i.e., cheating) as compared to honest participants. More precisely, a coalition of dishonest participants, by using their correct shares and the incorrect secret supplied by the combiner, have no better chance in determining the true secret (that would have been reconstructed if they submitted correct shares) than an honest participant.In this paper we study properties and constraints of cheating-immune secret sharing schemes. We show that a perfect secret sharing scheme cannot be cheating-immune. Then, we prove an upper bound on the number of cheaters tolerated in such schemes. We also repair a previously proposed construction to realize cheating-immune secret sharing schemes. Finally, we discuss some open problems.  相似文献   

4.
Optimal Colored Threshold Visual Cryptography Schemes   总被引:5,自引:0,他引:5  
Visual cryptography schemes allow the encoding of a secret image into n shares which are distributed to the participants. The shares are such that only qualified subsets of participants can visually recover the secret image. Usually the secret image consist of black and white pixels. In colored threshold visual cryptography schemes the secret image is composed of pixels taken from a given set of c colors. The pixels expansion and the contrast of a scheme are two measures of the goodness of the scheme.In this paper, we study c-color (k,n)-threshold visual cryptography schemes and provide a characterization of contrast-optimal schemes. More specifically we prove that there exists a contrast-optimal scheme that is a member of a special set of schemes, which we call canonical schemes, and that satisfy strong symmetry properties.Then we use canonical schemes to provide a constructive proof of optimality, with respect to the pixel expansion, of c-color (n,n)-threshold visual cryptography schemes.Finally, we provide constructions of c-color (2,n)-threshold schemes whose pixels expansion improves on previously proposed schemes.*This author is also a member of the Akamai Faculty Group, Akamai Technologies, 8 Cambridge center, Cambridge, MA 02142, USA.  相似文献   

5.
In a secret sharing scheme, some participants can lie about the value of their shares when reconstructing the secret in order to obtain some illicit benefit. We present in this paper two methods to modify any linear secret sharing scheme in order to obtain schemes that are unconditionally secure against that kind of attack. The schemes obtained by the first method are robust, that is, cheaters are detected with high probability even if they know the value of the secret. The second method provides secure schemes, in which cheaters that do not know the secret are detected with high probability. When applied to ideal linear secret sharing schemes, our methods provide robust and secure schemes whose relation between the probability of cheating and the information rate is almost optimal. Besides, those methods make it possible to construct robust and secure schemes for any access structure.  相似文献   

6.
Improved Schemes for Visual Cryptography   总被引:8,自引:0,他引:8  
A (k,n)-threshold visual cryptography scheme ((k,n)-threshold VCS, for short) is a method to encode a secret image SI into n shadow images called shares such that any k or more shares enable the visual recovery of the secret image, but by inspecting less than k shares one cannot gain any information on the secret image. The visual recovery consists of xeroxing the shares onto transparencies, and then stacking them. Any k shares will reveal the secret image without any cryptographic computation.In this paper we analyze visual cryptography schemes in which the reconstruction of black pixels is perfect, that is, all the subpixels associated to a black pixel are black. For any value of k and n, where 2 k n, we give a construction for (k,n)-threshold VCS which improves on the best previously known constructions with respect to the pixel expansion (i.e., the number of subpixels each pixel of the original image is encoded into). We also provide a construction for coloured (2,n)-threshold VCS and for coloured (n,n)-threshold VCS. Both constructions improve on the best previously known constructions with respect to the pixel expansion.  相似文献   

7.
Detection of cheating and identification of cheaters in threshold schemes has been well studied, and several solid solutions have been provided in the literature. This paper analyses Harn and Lin’s recent work on cheating detection and identification of cheaters in Shamir’s threshold scheme. We will show that, in a broad area, Harn–Lin’s scheme fails to detect cheating and even if the cheating is detected cannot identify the cheaters. In particular, in a typical Shamir (t, n)-threshold scheme, where n = 2t − 1 and up to t − 1 of participants are corrupted, their scheme neither can detect nor can identify the cheaters. Moreover, for moderate size of groups their proposed cheaters identification scheme is not practical.  相似文献   

8.
In 1994, Naor and Shamir introduced an unconditionally secure method for encoding black and white images. This method, known as a threshold visual cryptography scheme (VCS), has the benefit of requiring no cryptographic computation on the part of the decoders. In a -VCS, a share, in the form of a transparency, is given to ">n users. Any ">k users can recover the secret simply by stacking transparencies, but ">k-1 users can gain no information about the secret whatsoever.In this paper, we first explore the issue of contrast, by demonstrating that the current definitions are inadequate, and by providing an alternative definition. This new definition motivates an examination of minimizing pixel expansion subject to fixing the VCS parameters ">h and ">l. New bounds on pixel expansion are introduced, and connections between these bounds are examined. The best bound presented is tighter than any previous bound. An analysis of connections between (2, ">n) schemes and designs such as BIBD's, PBD's, and (">r, )-designs is performed. Also, an integer linear program is provided whose solution exactly determines the minimum pixel expansion of a (2, ">n)-VCS with specified ">h and >l.  相似文献   

9.
In a (t, n) secret sharing scheme, a secret s is divided into n shares and shared among a set of n shareholders by a mutually trusted dealer in such a way that any t or more than t shares will be able to reconstruct this secret; but fewer than t shares cannot know any information about the secret. When shareholders present their shares in the secret reconstruction phase, dishonest shareholder(s) (i.e. cheater(s)) can always exclusively derive the secret by presenting faked share(s) and thus the other honest shareholders get nothing but a faked secret. Cheater detection and identification are very important to achieve fair reconstruction of a secret. In this paper, we consider the situation that there are more than t shareholders participated in the secret reconstruction. Since there are more than t shares (i.e. it only requires t shares) for reconstructing the secret, the redundant shares can be used for cheater detection and identification. Our proposed scheme uses the shares generated by the dealer to reconstruct the secret and, at the same time, to detect and identify cheaters. We have included discussion on three attacks of cheaters and bounds of detectability and identifiability of our proposed scheme under these three attacks. Our proposed scheme is an extension of Shamir’s secret sharing scheme.   相似文献   

10.
In a conventional secret sharing scheme a dealer uses secure point-to-point channels to distribute the shares of a secret to a number of participants. At a later stage an authorised group of participants send their shares through secure point-to-point channels to a combiner who will reconstruct the secret. In this paper, we assume no point-to-point channel exists and communication is only through partial broadcast channels. A partial broadcast channel is a point-to-multipoint channel that enables a sender to send the same message simultaneously and privately to a fixed subset of receivers. We study secret sharing schemes with partial broadcast channels, called partial broadcast secret sharing schemes. We show that a necessary and sufficient condition for the partial broadcast channel allocation of a (t, n)-threshold partial secret sharing scheme is equivalent to a combinatorial object called a cover-free family. We use this property to construct a (t, n)-threshold partial broadcast secret sharing scheme with O(log n) partial broadcast channels. This is a significant reduction compared to n point-to-point channels required in a conventional secret sharing scheme. Next, we consider communication rate of a partial broadcast secret sharing scheme defined as the ratio of the secret size to the total size of messages sent by the dealer. We show that the communication rate of a partial broadcast secret sharing scheme can approach 1/O(log n) which is a significant increase over the corresponding value, 1/n, in the conventional secret sharing schemes. We derive a lower bound on the communication rate and show that for a (t,n)-threshold partial broadcast secret sharing scheme the rate is at least 1/t and then we propose constructions with high communication rates. We also present the case of partial broadcast secret sharing schemes for general access structures, discuss possible extensions of this work and propose a number of open problems.   相似文献   

11.
A perfect secret-sharing scheme is a method of distributing a secret among a set of participants such that only qualified subsets of participants can recover the secret and the joint shares of the participants in any unqualified subset is statistically independent of the secret. The set of all qualified subsets is called the access structure of the scheme. In a graph-based access structure, each vertex of a graph \(G\) represents a participant and each edge of \(G\) represents a minimal qualified subset. The information ratio of a perfect secret-sharing scheme is defined as the ratio between the maximum length of the share given to a participant and the length of the secret. The average information ratio is the ratio between the average length of the shares given to the participants and the length of the secret. The infimum of the (average) information ratios of all possible perfect secret-sharing schemes realizing a given access structure is called the (average) information ratio of the access structure. Very few exact values of the (average) information ratio of infinite families of access structures are known. Csirmaz and Tardos have found the information ratio of all trees. Based on their method, we develop our approach to determining the exact values of the average information ratio of access structures based on trees.  相似文献   

12.
A multisecret threshold scheme is a system which protects a number of secret keys among a group of n participants. There is a secret sK associated with every subset K of k participants such that any t participants in K can reconstruct the secret sK, but a subset of w participants cannot get any information about a secret they are not associated with. This paper gives a construction for the parameters t = 2, k = 3 and for any n and w that is optimal in the sense that participants hold the minimal amount of information. Communicated by: P. Wild  相似文献   

13.
Hypergraph decomposition and secret sharing   总被引:1,自引:0,他引:1  
A secret sharing scheme is a protocol by which a dealer distributes a secret among a set of participants in such a way that only qualified sets of them can reconstruct the value of the secret whereas any non-qualified subset of participants obtain no information at all about the value of the secret. Secret sharing schemes have always played a very important role for cryptographic applications and in the construction of higher level cryptographic primitives and protocols.In this paper we investigate the construction of efficient secret sharing schemes by using a technique called hypergraph decomposition, extending in a non-trivial way the previously studied graph decomposition techniques. A major advantage of hypergraph decomposition is that it applies to any access structure, rather than only structures representable as graphs. As a consequence, the application of this technique allows us to obtain secret sharing schemes for several classes of access structures (such as hyperpaths, hypercycles, hyperstars and acyclic hypergraphs) with improved efficiency over previous results. Specifically, for these access structures, we present secret sharing schemes that achieve optimal information rate. Moreover, with respect to the average information rate, our schemes improve on previously known ones.In the course of the formulation of the hypergraph decomposition technique, we also obtain an elementary characterization of the ideal access structures among the hyperstars, which is of independent interest.  相似文献   

14.
A perfect threshold secret sharing scheme to identify cheaters   总被引:10,自引:0,他引:10  
In this paper we consider the problem of identifying cheaters in secret sharing schemes. Rabin and Ben-Or presented a perfect and unconditionally secure secret sharing scheme in which the honest participants are able to identify the cheaters. We present a similar scheme, but one in which the information distributed to each participant is smaller.  相似文献   

15.
New Colored Visual Secret Sharing Schemes   总被引:8,自引:0,他引:8  
Visual secretsharing (VSS) schemes are used to protect the visual secret bysending n transparencies to different participantsso that k-1 or fewer of them have no informationabout the original image, but the image can be seen by stackingk or more transparencies. However, the revealedsecret image of a conventional VSS scheme is just black and white.The colored k out of n VSS scheme sharinga colored image is first introduced by Verheul and Van Tilborg[1]. In this paper, a new construction for the colored VSS schemeis proposed. This scheme can be easily implemented on basis ofa black & white VSS scheme and get much better block lengththan the Verheul-Van Tilborg scheme.  相似文献   

16.
A multi-secret sharing scheme is a protocol to share more than one secret among a set of participants, where each secret may have a distinct family of subsets of participants (also called ‘access structure’) that are qualified to recover it. In this paper we use an information-theoretic approach to analyze two different models for multi-secret sharing schemes. The proposed models generalize specific models which have already been considered in the literature. We first analyze the relationships between the security properties of the two models. Afterwards, we show that the security property of a multi-secret sharing scheme does not depend on the particular probability distribution on the sets of secrets. This extends the analogous result for the case of single-secret sharing schemes and implies that the bounds on the size of the information distributed to participants in multi-secret sharing schemes can all be strengthened. For each of the two models considered in this paper, we show lower bounds on the size of the shares distributed to participants. Specifically, for the general case in which the secrets are shared according to a tuple of arbitrary (and possibly different) access structures, we show a combinatorial condition on these structures that is sufficient to require a participant to hold information of size larger than a certain subset of secrets. For specific access structures of particular interest, namely, when all access structures are threshold structures, we show tight bounds on the size of the information distributed to participants.  相似文献   

17.
In this paper, we investigate the best pixel expansion of various models of visual cryptography schemes. In this regard, we consider visual cryptography schemes introduced by Tzeng and Hu (2002) [13]. In such a model, only minimal qualified sets can recover the secret image and the recovered secret image can be darker or lighter than the background. Blundo et al. (2006) [4] introduced a lower bound for the best pixel expansion of this scheme in terms of minimal qualified sets. We present another lower bound for the best pixel expansion of the scheme. As a corollary, we introduce a lower bound, based on an induced matching of hypergraph of qualified sets, for the best pixel expansion of the aforementioned model and the traditional model of visual cryptography scheme realized by basis matrices. Finally, we study access structures based on graphs and we present an upper bound for the smallest pixel expansion in terms of strong chromatic index.  相似文献   

18.
Ivan Arzhantsev 《代数通讯》2018,46(8):3539-3552
A non-degenerate toric variety X is called S-homogeneous if the subgroup of the automorphism group Aut(X) generated by root subgroups acts on X transitively. We prove that maximal S-homogeneous toric varieties are in bijection with pairs (P,𝒜), where P is an abelian group and 𝒜 is a finite collection of elements in P such that 𝒜 generates the group P and for every a𝒜 the element a is contained in the semigroup generated by 𝒜?{a}. We show that any non-degenerate homogeneous toric variety is a big open toric subset of a maximal S-homogeneous toric variety. In particular, every homogeneous toric variety is quasiprojective. We conjecture that any non-degenerate homogeneous toric variety is S-homogeneous.  相似文献   

19.
Tight Bounds on the Information Rate of Secret Sharing Schemes   总被引:4,自引:0,他引:4  
A secret sharing scheme is a protocol by means of which a dealer distributes a secret s among a set of participants P in such a way that only qualified subsets of P can reconstruct the value of s whereas any other subset of P, non-qualified to know s, cannot determine anything about the value of the secret.In this paper we provide a general technique to prove upper bounds on the information rate of secret sharing schemes. The information rate is the ratio between the size of the secret and the size of the largest share given to any participant. Most of the recent upper bounds on the information rate obtained in the literature can be seen as corollaries of our result. Moreover, we prove that for any integer d there exists a d-regular graph for which any secret sharing scheme has information rate upper bounded by 2/(d+1). This improves on van Dijk's result dik and matches the corresponding lower bound proved by Stinson in [22].  相似文献   

20.
Pixel expansion is an important parameter for Visual Cryptography Schemes (VCS). However, most papers in the literature are dedicated to reduce pixel expansion on the pixel level, i.e. to reduce the number of subpixels that represent a pixel in the original secret image. It is quite insufficient since the final size of the transparencies of the VCS is affected not only by the number of the subpixels, but also by the size of the subpixels in the transparencies. However, reducing the size of the subpixels in the transparencies results in difficulties of alignment of the transparencies. In this paper, we consider the alignment problem in VCS, and prove that in order to visually recover the original secret image, it is not necessary to align the transparencies precisely. This study is restricted to the case when only one transparency is shifted.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号