首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Nanoparticles are the focus of much attention due to their astonishing properties and numerous possibilities for applications in nanotechnology. For realising versatile functions, assembly of nanoparticles in regular patterns on surfaces and at interfaces is required. Assembling nanoparticles generates new nanostructures, which have unforeseen collective, intrinsic physical properties. These properties can be exploited for multipurpose applications in nanoelectronics, spintronics, sensors, etc. This review surveys different techniques, currently employed and being developed, for assembling nanoparticles in to ordered nanostructures. In this endeavour, the principles and methods involved in the development of assemblies are discussed. Subsequently, different possibilities of nanoparticle‐based nanostructures, obtained in multi‐dimensions, are presented.  相似文献   

5.
6.
7.
Catalyst‐assisted self‐assembly is widespread in nature to achieve spatial control over structure formation. Reported herein is the formation of hydrogel micropatterns on catalytic surfaces. Gelator precursors react on catalytic sites to form building blocks which can self‐assemble into nanofibers. The resulting structures preferentially grow where the catalyst is present. Not only is a first level of organization, allowing the construction of hydrogel micropatterns, achieved but a second level of organization is observed among fibers. Indeed, fibers grow with their main axis perpendicular to the substrate. This feature is directly linked to a unique mechanism of fiber formation for a synthetic system. Building blocks are added to fibers in a confined space at the solid–liquid interface.  相似文献   

8.
Highly selective, narcissistic self‐sorting can be achieved in the formation of self‐assembled cages of rare earth metals with multianionic salicylhydrazone ligands. The assembly process is highly sensitive to the length of the ligand and the coordination geometry. Most surprisingly, high‐fidelity sorting is possible between ligands of identical coordination angle and geometry, differing only in a single functional group on the ligand core, which is not involved in the coordination. Supramolecular effects allow discrimination between pendant functions as similar as carbonyl or methylene groups in a complex assembly process.  相似文献   

9.
We report a DFT study on the self‐assembly of the fullerene derivative PCBM on the Au(111) surface. Recent STM experiments (Angew. Chem. 2007 , 119, 8020–8023[1]) show a coverage‐dependent transition of the adsorption and self‐assembly of PCBM on this surface. To understand the origin of this observation, we compute the geometries and relative energies of ten PCBM dimers and four tetramers. The calculations show that the self‐assembly of PCBM at high coverage is mainly controlled by hydrogen bonding between the PCBM tails. Due to the large size of the fullerene cage, the hydrogen bonds are formed far away from the surface; hence they are very similar to those found in the gas phase. This picture successfully explains the observed site‐insensitive adsorption at high coverage and the 2D arrangement of PCBM on the surface.  相似文献   

10.
11.
Two borazine derivatives have been synthesised to investigate their self‐assembly behaviour on Au(111) and Cu(111) surfaces by scanning tunnelling microscopy (STM) and theoretical simulations. Both borazines form extended 2D networks upon adsorption on both substrates at room temperature. Whereas the more compact triphenyl borazine 1 arranges into close‐packed ordered molecular islands with an extremely low density of defects on both substrates, the tris(phenyl‐4‐phenylethynyl) derivative 2 assembles into porous molecular networks due to its longer lateral substituents. For both species, the steric hindrance between the phenyl and mesityl substituents results in an effective decoupling of the central borazine core from the surface. For borazine 1 , this is enough to weaken the molecule–substrate interaction, so that the assemblies are only driven by attractive van der Waals intermolecular forces. For the longer and more flexible borazine 2 , a stronger molecule–substrate interaction becomes possible through its peripheral substituents on the more reactive copper surface.  相似文献   

12.
13.
14.
15.
16.
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly.  相似文献   

17.
18.
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described.  相似文献   

19.
Supramolecular complexes consisting of a single‐stranded oligothymine ( dTn ) as the host template and an array of guest molecules equipped with a complementary diaminotriazine hydrogen‐bonding unit have been studied with electrospray‐ionization mass spectrometry (ESI‐MS). In this hybrid construct, a supramolecular stack of guest molecules is hydrogen bonded to dTn . By changing the hydrogen‐bonding motif of the DNA host template or the guest molecules, selective hydrogen bonding was proven. We were able to detect single‐stranded‐DNA (ssDNA)–guest complexes for strands with lengths of up to 20 bases, in which the highest complex mass detected was 15 kDa; these complexes constitute 20‐component self‐assembled objects. Gas‐phase breakdown experiments on single‐ and multiple‐guest–DNA assemblies gave qualitative information on the fragmentation pathways and the relative complex stabilities. We found that the guest molecules are removed from the template one by one in a highly controlled way. The stabilities of the complexes depend mainly on the molecular weight of the guest molecules, a fact suggesting that the complexes collapse in the gas phase. By mixing two different guests with the ssDNA template, a multicomponent dynamic library can be created. Our results demonstrate that ESI‐MS is a powerful tool to analyze supramolecular ssDNA complexes in great detail.  相似文献   

20.
In the context of designing novel amino acid nanostructures, the capacity of tyrosine alone to form well‐ordered structures under different conditions was explored. It was observed that Tyr can self‐assemble into well‐defined morphologies when deposited onto surfaces for transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. The influence of various parameters that can modulate the self‐assembly process, including concentration of the amino acid, aging time, and solvent, was studied. Different supramolecular architectures, including nanoribbons, branched structures, and fern‐like arrangements were also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号