首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two series of new dinuclear rare‐earth metal alkyl complexes supported by indolyl ligands in novel μ‐η211 hapticities are synthesized and characterized. Treatment of [RE(CH2SiMe3)3(thf)2] with 1 equivalent of 3‐(tBuN?CH)C8H5NH ( L1 ) in THF gives the dinuclear rare‐earth metal alkyl complexes trans‐[(μη211‐3‐{tBuNCH(CH2SiMe3)}Ind)RE(thf)(CH2SiMe3)]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C?N group is transferred to the amido group by alkyl CH2SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μη211 bonding modes, forming the dinuclear rare‐earth metal alkyl complexes. When L1 is reduced to 3‐(tBuNHCH2)C8H5NH ( L2 ), the reaction of [Yb(CH2SiMe3)3(thf)2] with 1 equivalent of L2 in THF, interestingly, generated the trans‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (major) and cis‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (minor) complexes. The catalytic activities of these dinuclear rare‐earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio‐ and stereoselectivities for isoprene 1,4‐cis‐polymerization.  相似文献   

2.
Cyanide Bridged Coordination Polymers from cis‐ or trans‐[Ru(tBuNC)4(CN)2] and MnCl2: About the Influence of Different Topologies on the Magnetic Properties of Materials The reaction of cis‐ or trans‐[Ru(tBuNC)4(CN)2] with MnCl2 as an additional transition metal fragment yields the one dimensional coordination polymers {cis‐[Ru(CN)2(tBuNC)4] MnCl2}n, ( 1 ), and {trans‐[Ru(CN)2(tBuNC)4]MnCl2}n, ( 2 ), with a different arrangement of the metal centers caused by the different stereochemistry of the starting compounds. The variation of the Ru‐C‐N‐Mn geometry nevertheless leads to significant differences in the magnetic properties of 1 and 2 . The coordination polymer derived from trans‐[Ru(tBuNC)4(CN)2] shows a more efficient antiferromagnetic intrachain interaction between the manganese centers compared to the cis‐derivative.  相似文献   

3.
Based on the potassium [{S(tBuN)2(tBuNH)}2K3(tmeda)-K3{(HNtBu)(NtBu)2S}2] ( 1 ) and sodium precursors [S(tBuN)3(thf)3-Na3SNa3(thf)3(NtBu)3S] ( 2 ), [S(tBuN)3(thf)3Na3{(HNtBu)(NtBu)2S}] ( 3 ) and [(tmeda)3S-{Na3(NtBu)3S}2] ( 4 ) the syntheses and magnetic properties of three mixed metal triimidosulfite based alkali-lanthanide-metal-cages [(tBuNH)Dy{K(0.5tmeda)}2{(NtBu)3S}2]n ( 5 ) and [ClLn{Na(thf)}2{(NtBu)3S}2] with Ln=Dy ( 6 ), Er ( 7 ) are reported. The corresponding potassium ( 1 ) and sodium ( 2 – 4 ) based cages are characterized through XRD and NMR experiments. Preventing lithium chloride co-complexation led to a significant increase of SMM performance to previously reported sulfur-nitrogen ligands. The subsequent DyIII-complexes 5 and 6 display slow relaxation of magnetization at zero field, with relaxation barriers U=77.0 cm−1 for 5 , 512.9 and 316.3 cm−1 for 6 , respectively. Significantly, the latter complex 6 also exhibits a butterfly-shaped hysteresis up to 7 K.  相似文献   

4.
Treatment of [K(BIPMMesH)] (BIPMMes={C(PPh2NMes)2}2?; Mes=C6H2‐2,4,6‐Me3) with [UCl4(thf)3] (1 equiv) afforded [U(BIPMMesH)(Cl)3(thf)] ( 1 ), which generated [U(BIPMMes)(Cl)2(thf)2] ( 2 ), following treatment with benzyl potassium. Attempts to oxidise 2 resulted in intractable mixtures, ligand scrambling to give [U(BIPMMes)2] or the formation of [U(BIPMMesH)(O)2(Cl)(thf)] ( 3 ). The complex [U(BIPMDipp)(μ‐Cl)4(Li)2(OEt2)(tmeda)] ( 4 ) (BIPMDipp={C(PPh2NDipp)2}2?; Dipp=C6H3‐2,6‐iPr2; tmeda=N,N,N′,N′‐tetramethylethylenediamine) was prepared from [Li2(BIPMDipp)(tmeda)] and [UCl4(thf)3] and, following reflux in toluene, could be isolated as [U(BIPMDipp)(Cl)2(thf)2] ( 5 ). Treatment of 4 with iodine (0.5 equiv) afforded [U(BIPMDipp)(Cl)2(μ‐Cl)2(Li)(thf)2] ( 6 ). Complex 6 resists oxidation, and treating 4 or 5 with N‐oxides gives [{U(BIPMDippH)(O)2‐ (μ‐Cl)2Li(tmeda)] ( 7 ) and [{U(BIPMDippH)(O)2(μ‐Cl)}2] ( 8 ). Treatment of 4 with tBuOLi (3 equiv) and I2 (1 equiv) gives [U(BIPMDipp)(OtBu)3(I)] ( 9 ), which represents an exceptionally rare example of a crystallographically authenticated uranium(VI)–carbon σ bond. Although 9 appears sterically saturated, it decomposes over time to give [U(BIPMDipp)(OtBu)3]. Complex 4 reacts with PhCOtBu and Ph2CO to form [U(BIPMDipp)(μ‐Cl)4(Li)2(tmeda)(OCPhtBu)] ( 10 ) and [U(BIPMDipp)(Cl)(μ‐Cl)2(Li)(tmeda)(OCPh2)] ( 11 ). In contrast, complex 5 does not react with PhCOtBu and Ph2CO, which we attribute to steric blocking. However, complexes 5 and 6 react with PhCHO to afford (DippNPPh2)2C?C(H)Ph ( 12 ). Complex 9 does not react with PhCOtBu, Ph2CO or PhCHO; this is attributed to steric blocking. Theoretical calculations have enabled a qualitative bracketing of the extent of covalency in early‐metal carbenes as a function of metal, oxidation state and the number of phosphanyl substituents, revealing modest covalent contributions to U?C double bonds.  相似文献   

5.
A study of the coordination chemistry of different bis(diphenylphosphino)methanide ligands [Ph2PC(X)PPh2] (X=H, SiMe3) with Group 4 metallocenes is presented. The paramagnetic complexes [Cp2Ti{κ2P,P‐Ph2PC(X)PPh2}] (X=H ( 3 a ), X=SiMe3 ( 3 b )) have been prepared by the reactions of [(Cp2TiCl)2] with [Li{C(X)PPh2}2(thf)3]. Complex 3 b could also be synthesized by reaction of the known titanocene alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with Ph2PC(H)(SiMe3)PPh2 ( 2 b ). The heterometallacyclic complex [Cp2Zr(H){κ2P,P‐Ph2PC(H)PPh2}] ( 4 aH ) has been prepared by reaction of the Schwartz reagent with [Li{C(H)PPh2}2(thf)3]. Reactions of [Cp2HfCl2] with [Li{C(X)PPh2}2(thf)3] gave the highly strained corresponding metallacycles [Cp2M(Cl){κ2P,P‐Ph2PC(X)PPh2}] ( 5 aCl and 5 bCl ) in very good yields. Complexes 3 a , 4 aH , and 5 aCl have been characterized by X‐ray crystallography. Complex 3 a has also been characterized by EPR spectroscopy. The structure and bonding of the complexes has been investigated by DFT analysis. Reactions of complexes 4 aH , 5 aCl , and 5 bCl did not give the corresponding more unsaturated heterometallacyclobuta‐2,3‐dienes.  相似文献   

6.
tBuN = VCl2 · 1,2-Dimethoxoethane, a Precursor in the Synthesis of Binuclear Diamagnetic tert -Butylimidovanadium(IV) Compounds Syntheses of the paramagnetic tert-butylimidovanadium(IV) complexes tBuN = VCl2 · DME ( 7 ), tBuN = VCl2 · 2 L (L = 1,4-dioxane, thf, PMe3, PEt3, pyridine) and tBuN = VBr2 · DME are described; the free Lewis acids has been found by mass spectroscopy to be the binuclear compounds [(μ-NtBu)2V2Cl4] und [(μ-NtBu)2V2Br4]. 7 reacts with LiOR, LiOAr and LiNR2 forming binuclear diamagnetic tert-butylimidovanadium(IV) compounds: [(μ-NtBu)2V2Cl2(OiPr)2] ( 18 ), [(μ-NtBu)2V2(OR)4], [(μ-NtBu)2V2Cl2(OAr)2], [(μ-NtBu)2V2(OAr)4] and [(μ-NtBu)2V2Cl2(NR2)2]. In additional experiments the complexes [(μ-NtBu)2V2(CH2CMe3)2(OAr)2], [(μ-NtBu)2V2Me2(NR2)2], [(μ-NtBu)2V2Cl4] and tBuN = V(OAr)3 has been prepared. All compounds obtained are characterized by spectroscopic methods (MS; 1H, 13C, 51V NMR), [(μ-NtBu)2V2Cl2(NtBuSiMe3)2] ( 21 ) by single crystal x-ray diffraction. For 18 the presence of cis/trans isomeres was shown by NMR spectroscopy. The 51V NMR spectra of the binuclear diamagnetic vanadium (IV) compounds are discussed.  相似文献   

7.
Lanthanide ions are particularly well-suited for the design of single-molecule magnets owing to their large unquenched orbital angular momentum and strong spin-orbit coupling that gives rise to high magnetic anisotropy. Such nanoscopic bar magnets can potentially revolutionize high-density information storage and processing technologies, if blocking temperatures can be increased substantially. Exploring non-classical ligand scaffolds with the aim to boost the barriers to spin-relaxation are prerequisite. Here, the synthesis, crystallographic and magnetic characterization of a series of each isomorphous mono- and dinuclear lanthanide (Ln=Gd, Tb, Dy, Ho, Er) complexes comprising tetraimido sulfate ligands are presented. The dinuclear Dy complex [{(thf)2Li(NtBu)2S(tBuN)2DyCl2}2 ⋅ ClLi(thf)2] ( 1c ) shows true signatures of single-molecule magnet behavior in the absence of a dc field. In addition, the mononuclear Dy and Tb complexes [{(thf)2Li(NtBu)2S(tBuN)2LnCl2(thf)2] ( 2b , c ) show slow magnetic relaxation under applied dc fields.  相似文献   

8.
Reaction of the secocubane [Sn32‐NHtBu)22‐NtBu)(μ3‐NtBu)] ( 1 ) with dibutylmagnesium produces the heterobimetallic cubane [Sn3Mg(μ3‐NtBu)4] ( 4 ) which forms the monochalcogenide complexes of general formula [ESn3Mg(μ3‐NtBu)4] ( 5 a , E=Se; 5 b , E=Te) upon reaction with elemental chalcogens in THF. By contrast, the reaction of the anionic lithiated cubane [Sn3Li(μ3‐NtBu)4]? with the appropriate quantity of selenium or tellurium leads to the sequential chalcogenation of each of the three SnII centres. Pure samples of the mono‐ or dichalcogenides are, however, best obtained by stoichiometric redistribution reactions of [Sn3Li(μ3‐NtBu)4]? and the trichalcogenides [E3Sn3Li(μ3‐NtBu)4]? (E=Se, Te). These reactions are conveniently monitored by using 119Sn NMR spectroscopy. The anion [Sn3Li(μ3‐NtBu)4]? also acts as an effective chalcogen‐transfer reagent in reactions of selenium with the neutral cubane [{Snμ3‐N(dipp)}4] ( 8 ) (dipp=2,6‐diisopropylphenyl) to give the dimer [(thf)Sn{μ‐N(dipp)}2Sn(μ‐Se)2Sn{μ‐N(dipp)}2Sn(thf)] ( 9 ), a transformation that results in cleavage of the Sn4N4 cubane into four‐membered Sn2N2 rings. The X‐ray structures of 4 , 5 a , 5 b , [Sn3Li(thf)(μ3‐NtBu)43‐Se)(μ2‐Li)(thf)]2 ( 6 a ), [TeSn3Li(μ3‐NtBu)4][Li(thf)4] ( 6 b ), [Te2Sn3Li(μ3‐NtBu)4][Li([12]crown‐4)2] ( 7 b′′ ) and 9 are presented. The fluxional behaviour of cubic imidotin chalcogenides and the correlation between NMR coupling constants and tin–chalcogen bond lengths are also discussed.  相似文献   

9.
The reaction of MCl4(thf)2 (M = Zr, Hf) with 1,4-dilitiobutane in diethyl ether at –25 °C or at 0 °C with a molar ratio of 1 : 3 yields the homoleptic “ate” complexes [(thf)4Li] [{(thf)Li}M(C4H8)3] 1 - Zr (M = Zr) and 1 - Hf (M = Hf). The crystalline compounds form ion lattices with solvent-separated [(thf)4Li]+ cations and [{(thf)Li}M(C4H8)3] anions. The NMR spectra at –20 °C show magnetic equivalence of the M–CH2 and of the β-CH2 groups of the butane-1,4-diide ligands on the NMR time scale. Analogous reactions of MCl4(thf)2 with 1,4-dilithiobutane with a molar ratio of 1 : 2 proceed unclear. However, single crystals of [Li(thf)4] [HfCl5(thf)] ( 2 ) can be isolated with the hafnium atom in a distorted octahedral coordination sphere of five chloro and one thf ligand. NMR spectra allow to elucidate the time-dependent degradation of 1-Hf and 1-Zr in THF and toluene at 25 °C via THF cleavage. Addition of tmeda to a solution of 1-Zr allows the isolation of intermediately formed [{(tmeda)Li}2Zr(nBu)2(C4H8)2] ( 3 ).  相似文献   

10.
Complexes Containing Antimony Ligands: [tBu2(Cl)SbW(CO)5], [tBu2(OH)SbW(CO)5], O[SbPh2W(CO)5]2, E[SbMe2W(CO)5]2 (E = Se, Te), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] Syntheses of [tBu2(Cl)SbW(CO)5] ( 1 ), [tBu2(OH)SbW(CO)5] ( 2 ), O[SbPh2W(CO)5]2 ( 3 ), Se[SbMe2W(CO)5]2 ( 4 ), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] ( 5 ) Te[SbMe2W(CO)5]2 ( 6 ) and crystal structures of 1 – 5 are reported.  相似文献   

11.
The syntheses and single crystal X‐ray structure determinations are reported for [Li(thf)4][SnCl5(thf)] ( 1 ) and {[Li(Et2O)2]2‐(μ‐Cl2)2‐SnIVCl2} ( 2 ). Compound 1 is ionic with a tetrahedral coordinated lithium cation and distorted octahedral tin (IV) atom in the anion, while compound ( 2 ) is a centrosymmetric heteronuclear double salt of LiCl and SnCl4. [Li(thf)4][SnCl5(thf)] is monoclinic, P21/n, a = 11.204(1), b = 15.599(1), c = 17.720(2) Å; β = 96.734(2)°, Z = 4, R 0.0418; {[Li(Et2O)2]2‐(μ‐Cl2)2‐SnIVCl2} is monoclinic, P21/n, a = 10.848(2), b = 12.764(2), c = 11.748(2) Å; β = 90.388(3)°, Z = 4, R = 0.0851.  相似文献   

12.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

13.
A chemically non‐innocent pyrrole‐based trianionic (ONO)3? pincer ligand within [(pyr‐ONO)TiCl(thf)2] ( 2 ) can access the dianionic [(3H‐pyr‐ONO)TiCl2(thf)] ( 1‐THF ) and monoanionic [(3H,4H‐pyr‐ONO)TiCl2(OEt2)][B{3,5‐(CF3)2C6H3}4] ( 3‐Et2O ) states through remote protonation of the pyrrole γ‐C π‐bonds. The homoleptic [(3H‐pyr‐ONO)2Zr] ( 4 ) was synthesized and characterized by X‐ray diffraction and NMR spectroscopy in solution. The protonation of 4 by [H(OEt2)2][B{C6H3(CF3)2}4] yields [(3H,4H‐pyr‐ONO)(3H‐pyr‐ONO)Zr][B{3,5‐(CF3)2C6H3}4] ( 5 ), thus demonstrating the storage of three protons.  相似文献   

14.
A series of NCO/NCS pincer precursors, 3‐(Ar2OCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCOAr2)Br, 3a , 3b , 3c , 3d ) and 3‐(2,6‐Me2C6H3SCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCSMe)Br, 4a and 4b ) were synthesized and characterized. The reactions of [Ar1NCOAr2]Br/ [Ar1NCSMe]Br with nBuLi and the subsequent addition of the rare‐earth‐metal chlorides afforded their corresponding rare‐earth‐metal–pincer complexes, that is, [(Ar1NCOAr2)YCl2(thf)2] ( 5a , 5b , 5c , 5d ), [(Ar1NCOAr2)LuCl2(thf)2] ( 6a , 6d ), [(Ar1NCOAr2)GdCl2(thf)2] ( 7 ), [{(Ar1NCSMe)Y(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 8 , 9 ), and [{(Ar1NCSMe)Gd(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 10 , 11 ). These diamagnetic complexes were characterized by 1H and 13C NMR spectroscopy and the molecular structures of compounds 5a , 6a , 7 , and 10 were well‐established by X‐ray diffraction analysis. In compounds 5a , 6a , and 7 , all of the metal centers adopted distorted pentagonal bipyramidal geometries with the NCO donors and two oxygen atoms from the coordinated THF molecules in equatorial positions and the two chlorine atoms in apical positions. Complex 10 is a dimer in which the two equal moieties are linked by two chlorine atoms and two Cl? Li? Cl bridges. In each part, the gadolinium atom adopts a distorted pentagonal bipyramidal geometry. Activated with alkylaluminum and borate, the gadolinium and yttrium complexes showed various activities towards the polymerization of isoprene, thereby affording highly cis‐1,4‐selective polyisoprene, whilst the NCO? lutetium complexes were inert under the same conditions.  相似文献   

15.
The tris(pyrazolyl)methane compound HC(3‐Ad‐5‐Mepz)3 [ 1 , 3‐Ad‐5‐Mepz=3‐(1‐adamantyl)‐5‐methylpyrazolyl] and its regioisomer, HC(3‐Ad‐5‐Mepz)2(3‐Me‐5‐Adpz), were synthesized and crystallographically characterized. Deprotonation of 1 with MeLi afforded the lithium complex [{κ3‐N‐C(3‐Ad‐5‐Mepz)3}Li(thf)], which incorporates a tris(pyrazolyl)methanide ligand of unprecedented bulk. Reaction of 1 with MeMgI gave the ionic coordination complex [{κ3‐N‐HC(3‐Ad‐5‐Mepz)3}MgMe]I, which was readily deprotonated to afford the neutral compound [{κ3‐N‐C(3‐Ad‐5‐Mepz)3}MgMe]. The related magnesium butyl compound [{κ3‐N‐C(3‐Ad‐5‐Mepz)3}MgBu] was prepared from the reaction of 1 and MgBu2. Treating this with LiAlH4 or LiAlD4 led to rare examples of terminal magnesium hydride/deuteride complexes, [{κ3‐N‐C(3‐Ad‐5‐Mepz)3}MgH/D]. All neutral magnesium alkyl and hydride compounds were crystallographically authenticated. Reaction of [{κ3κN‐C(3‐Ad‐5‐Mepz)3}Li(thf)] with [YbI2(thf)2] yielded the first structurally characterized f‐block tris(pyrazolyl)methanide complex, [{κ3‐N‐C(3‐Ad‐5‐Mepz)3}YbI(thf)].  相似文献   

16.
Metalat Ions [Al(OR)4] as Chelating Ligands for Transition Metal Cations Waterfree CoCl2 can be reacted with [{Li(Diglyme)}{Al(OtBu)4}] in THF to the complex [Li(THF)4][{CoCl2}{Al(OtBu)4}]. Addition of diglyme to the reaction mixtures gives the blue compound [Li(diglyme)2][{CoCl2}{Al(OtBu)4}] ( 1 ). According to this procedure the FeII complex [Li(Diglyme)2][{FeCl2}2{Al(OtBu)4}] ( 2 ) was formed by treatment of FeCl2 with Li[Al(OtBu)4]. [{Li(diglyme)}{Al(OtBu)4}] in THF/diglyme can be used as alkoxide transfer reagent on TiCl4 to give the neutral complex [TiCl2(OtBu)2(diglyme)] ( 3 ). The sky‐blue salt [Li(THF)4]2[{CoCl2}3{Al(OCH2Ph)4}2] ( 4 ) was obtained by reaction of Li[Al(OCH2Ph)4] with CoCl2 in THF. By treatment of 4 with diglyme ligand redistribution was observed giving the sky‐blue compound [Li(Diglyme)2]2[{CoCl2}3{Al(OCH2Ph)4}2] ( 5 ) and the violet salt [Li(Diglyme)2]2[Co2Cl5(OCH2Ph)] ( 6 ). A similar salt can be synthesized also directly from Li[Al(OtBu)4] and CoCl2 in diglyme to give [Li(Diglyme)2]2[Co2Cl5(OtBu)] ( 7 ). 1 — 7 were characterized by IR spectroscopy, partly by mass spectrometry and X‐ray analyses. UV‐VIS spectra were recorded from 1 and 5 . According to the X‐ray analyses the MII ions as well as the AlIII ions are coordinated distorted tedrahedrally. In 1 , 2 , 4 und 5 the unit [Al(OR)4] acts a chelating ligand as desired.  相似文献   

17.
New Research of Reaction Behaviour of Triorganylcyclotriphosphines. The Crystal Structures of [(PPh3)2Pt(PtBu)3], [(PPh3)2Pd(PtBu)2], [(CO)4Cr{(PiPr)3}2], [RhCl(PPh3)(PtBu)3], [(NiCO)62-CO)3{(PtBu)2}2], and [(CpFeCO)2(μ-CO)(μ-PHtBu)]+ · [FeCl3(thf)] By the reaction of triorganylcyclotriphosphines with transition metal complexes single- and polynuclear compounds are formed, in which the cyclophosphines are bonded in different ways to the metal, the ring either preserving structure or under going ring opening. Depending on the reaction conditions the following compounds can be characterized: [(PPh3)2Pt(PtBu)3] ( 1 ), [(PPh3)2Pd(PtBu)2] ( 2 ), [(CO)4Cr{(PiPr)3}2] ( 3 ), [RhCl(PPh3)(PtBu)3] ( 4 ), [(NiCO)62-CO)3{(PtBu)2}2] ( 5 ) and [(CpFeCO)2(μ-CO)(μ-PHtBu)]+ · [FeCl3(thf)] ( 6 ). The structures of 1 – 6 were obtained by X-ray single crystal structure analysis ( 1 : space group P21/n (No. 14), Z = 4, a = 1279.6(3) pm, b = 1733.1(4) pm, c = 2079.1(4) pm, β = 90.20(3)°; 2 : space group P21/c (No. 14), Z = 4, a = 1053.3(2) pm, b = 2085.2(4) pm, c = 1855.7(4) pm, β = 98.77(3)°; 3 : space group P 1 (No. 2), Z = 2, a = 1022.6(2) pm, b = 1026.4(2) pm, c = 1706.0(3) pm, α = 82.36(3)°, β = 86.10(3)°, γ = 64.40(3)°; 4 : space group P 1 (No. 2), Z = 2, a = 980.2(2) pm, b = 1309.5(3) pm, c = 1573.4(3) pm, α = 99.09(3)°, β = 99.46(3)°, γ= 111.87(3)°; 5 : space group P21/c (No. 14), Z = 4, a = 1804.0(5) pm, b = 2261.2(6) pm, c = 1830.1(7) pm, β = 96.99(3)°; 6 : space group P21/c (No. 14), Z = 4, a = 943.2(3) pm, b = 2510.6(7) pm, c = 1325.1(6) pm, β = 98.21(3)°).  相似文献   

18.
Three new complexes with phosphanylphosphido ligands, [Cu4{μ2‐P(SiMe3)‐PtBu}4] ( 1 ), [Ag4{μ2‐P(SiMe3)‐PtBu2}4] ( 2 ) and [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ ( 3 ) were synthesized and structurally characterized by X‐ray diffraction, NMR spectroscopy, and elemental analysis. Complexes 1 and 2 were obtained in the reactions of lithium derivative of diphosphane tBu2P‐P(SiMe3)Li · 2.7THF with CuCl and [iBu3PAgCl]4, respectively. The X‐ray diffraction analysis revealed that the complexes 1 and 2 present macrocyclic, tetrameric form with Cu4P4 and Ag4P4 core. Complex 3 was prepared in the reaction of CuCl with a different derivative of lithiated diphosphane iPr2P‐P(SiMe3)Li · 2(Diglyme). Surprisingly, the X‐ray analysis of 3 revealed that in this reaction instead of the tetramer the monomeric form, ionic complex [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ was formed.  相似文献   

19.
S‐Nitrosation of the coordinated thiolate of dinitrosyl iron complexes (DNICs) to generate S‐nitrosothiols (RSNOs) was demonstrated. Transformation of [{(NO)2Fe(μ‐StBu)}2] ( 1‐tBuS ) into the {Fe(NO)2}9 DNIC [(NO)2Fe(StBu)(MeIm)] ( 2‐MeIm ) occurs under addition of 20 equiv of 1‐methylimidazole (MeIm) into a solution of 1‐tBuS in THF. The dynamic interconversion between {Fe(NO)2}9 [(NO)2Fe(S‐NAP)(dmso)] ( 2‐dmso ) (NAP=N‐acetyl‐D ‐penicillamine) and [{(NO)2Fe(μ‐S‐NAP)}2] ( 1‐NAP ) was also observed in a solution of complex 1‐NAP in DMSO. In contrast to the reaction of complex 2‐MeIm and bis(dimethylthiocarbamoyl) disulfide ((DTC)2) to yield {Fe(NO)}7 [(NO)Fe(DTC)2] ( 3 ) (DTC=S2CNMe2) accompanied by (tBuS)2 and NO(g), transformation of {Fe(NO)2}9 2‐MeIm ( 2‐dmso ) into RSNOs (RS=tBuS, NAP‐S) along with complex 3 induced by the Brønsted acid solution of (DTC)2 demonstrated that Brønsted acid may play a critical role in triggering S‐nitrosation of the coordinated thiolate of DNICs 2‐MeIm (or 2‐dmso ) to produce RSNOs. That is, DNIC‐mediated S‐nitrosation requires a Brønsted acid–Lewis base pair to produce RSNO. Transformation of DNICs into RSNOs may only occur on the one‐thiolate‐containing {Fe(NO)2}9 DNICs, in contrast to protonation of the two‐thiolate‐containing DNICs [(NO)2Fe(SR)2]? by Brønsted acid to yield [{(NO)2Fe(μ‐SR)}2]. These results might rationalize that the known protein‐Cys‐SNO sites derived from DNICs were located adjacent to acid and base motifs, and no protein‐bound SNO characterized to date has been directly derived from [protein–(cysteine)2Fe(NO)2] in biology.  相似文献   

20.
The reduction of digallane [(dpp‐bian)Ga? Ga(dpp‐bian)] ( 1 ) (dpp‐bian=1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene) with lithium and sodium in diethyl ether, or with potassium in THF affords compounds featuring the direct alkali metal–gallium bonds, [(dpp‐bian)Ga? Li(Et2O)3] ( 2 ), [(dpp‐bian)Ga? Na(Et2O)3] ( 3 ), and [(dpp‐bian)Ga? K(thf)5] ( 7 ), respectively. Crystallization of 3 from DME produces compound [(dpp‐bian)Ga? Na(dme)2] ( 4 ). Dissolution of 3 in THF and subsequent crystallization from diethyl ether gives [(dpp‐bian)Ga? Na(thf)3(Et2O)] ( 5 ). Ionic [(dpp‐bian)Ga]?[Na([18]crown‐6)(thf)2]+ ( 6 a ) and [(dpp‐bian)Ga]?[Na(Ph3PO)3(thf)]+ ( 6 b ) were obtained from THF after treatment of 3 with [18]crown‐6 and Ph3PO, respectively. The reduction of 1 with Group 2 metals in THF affords [(dpp‐bian)Ga]2M(thf)n (M=Mg ( 8 ), n=3; M=Ca ( 9 ), Sr ( 10 ), n=4; M=Ba ( 11 ), n=5). The molecular structures of 4 – 7 and 11 have been determined by X‐ray crystallography. The Ga? Na bond lengths in 3 – 5 vary notably depending on the coordination environment of the sodium atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号