首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Natural G‐quartets, a cyclic and coplanar array of four guanine residues held together through a Watson–Crick/Hoogsteen hydrogen‐bond network, have received recently much attention due to their involvement in G‐quadruplex DNA, an alternative higher‐order DNA structure strongly suspected to play important roles in key cellular events. Besides this, synthetic G‐quartets (SQ), which artificially mimic native G‐quartets, have also been widely studied for their involvement in nanotechnological applications (i.e., nanowires, artificial ion channels, etc.). In contrast, intramolecular synthetic G‐quartets (iSQ), also named template‐assembled synthetic G‐quartets (TASQ), have been more sparingly investigated, despite a technological potential just as interesting. Herein, we report on a particular iSQ named PNADOTASQ, which demonstrates very interesting properties in terms of DNA and RNA interaction (notably its selective recognition of quadruplexes according to a bioinspired process) and catalytic activities, through its ability to perform peroxidase‐like hemin‐mediated oxidations either in an autonomous fashion (i.e., as pre‐catalyst for TASQzyme reactions) or in conjunction with quadruplex DNA (i.e., as enhancing agents for DNAzyme processes). These results provide a solid scientific basis for TASQ to be used as multitasking tools for bionanotechnological applications.  相似文献   

4.
5.
DNA and RNA G‐quadruplexes (G4) are unusual nucleic acid structures involved in a number of key biological processes. RNA G‐quadruplexes are less studied although recent evidence demonstrates that they are biologically relevant. Compared to DNA quadruplexes, RNA G4 are generally more stable and less polymorphic. Duplexes and quadruplexes may be combined to obtain pure tetrameric species. Here, we investigated whether classical antiparallel duplexes can drive the formation of antiparallel tetramolecular quadruplexes. This concept was first successfully applied to DNA G4. In contrast, RNA G4 were found to be much more unwilling to adopt the forced antiparallel orientation, highlighting that the reason RNA adopts a different structure must not be sought in the loops but in the G‐stem structure itself. RNA antiparallel G4 formation is likely to be restricted to a very small set of peculiar sequences, in which other structural features overcome the formidable intrinsic barrier preventing its formation.  相似文献   

6.
7.
8.
This review deals with recent progress in the synthesis and evaluation of our telomestatin‐inspired macrocyclic polyoxazoles as G‐quadruplex (G4) ligands. The hexaoxazole derivatives (6OTDs) interact with and stabilize G4‐forming oligonucleotides, depending upon the character of the side chain functional groups. Cationic functional groups are particularly effective due to their secondary interaction with phosphate in the DNA backbone. On the other hand, heptaoxazole derivatives (7OTDs) showed potent G4‐binding and stabilization activity regardless of the functional groups on the side chain. A caged G4 ligand, Y2Nv2‐6OTD ( 7 ), and a fluorescent G4 ligand, L1BOD‐7OTD ( 13 ), have been synthesized.  相似文献   

9.
G‐quadruplexes are four‐stranded nucleic acid structures that are built from consecutively stacked guanine tetrad (G‐tetrad) assemblies. The simultaneous incorporation of two guanine base lesions, xanthine (X) and 8‐oxoguanine (O), within a single G‐tetrad of a G‐quadruplex was recently shown to lead to the formation of a stable G?G?X?O tetrad. Herein, a judicious introduction of X and O into a human telomeric G‐quadruplex‐forming sequence is shown to reverse the hydrogen‐bond polarity of the modified G‐tetrad while preserving the original folding topology. The control exerted over G‐tetrad polarity by joint X?O modification will be valuable for the design and programming of G‐quadruplex structures and their properties.  相似文献   

10.
11.
12.
Sequence inversion in G‐rich DNA from 5′→3′ to 3′→5′ exerts a substantial effect on the number of structures formed, while the type of G‐quadruplex fold is in fact determined by the presence of K+ or Na+ ions. The melting temperatures of G‐quadruplexes adopted by oligonucleotides with sequences in the 5′→3′ direction are higher than those of their 3′→5′ counterparts with both KCl and NaCl. CD, UV, and NMR spectroscopy demonstrates the importance of primary sequence for the structural diversity of G‐quadruplexes. The changes introduced by mere sequence reversal of the G‐rich DNA segment have a substantial impact on the polymorphic nature of the resulting G‐quadruplexes and their potential physiological roles. The insights resulting from this study should enable extension of the empirical rules for the prediction of G‐quadruplex topology.  相似文献   

13.
14.
Aptamer‐based biosensors offer promising perspectives for high performance, specific detection of proteins. The thrombin binding aptamer (TBA) is a G‐quadruplex‐forming DNA sequence, which is frequently elongated at one end to increase its analytical performances in a biosensor configuration. Herein, we investigate how the elongation of TBA at its 5′ end affects its structure and stability. Circular dichroism spectroscopy shows that TBA folds in an antiparallel G‐quadruplex conformation with all studied cations (Ba2+, Ca2+, K+, Mg2+, Na+, NH4+, Sr2+ and the [Ru(NH3)6]2+/3+ redox marker) whereas other structures are adopted by the elongated aptamers in the presence of some of these cations. The stability of each structure is evaluated on the basis of UV spectroscopy melting curves. Thermal difference spectra confirm the quadruplex character of all conformations. The elongated sequences can adopt a parallel or an antiparallel structure, depending on the nature of the cation; this can potentially confer an ion‐sensitive switch behavior. This switch property is demonstrated with the frequently employed redox complex [Ru(NH3)6]3+, which induces the parallel conformation at very low concentrations (10 equiv per strand). The addition of large amounts of K+ reverts the conformation to the antiparallel form, and opens interesting perspectives for electrochemical biosensing or redox‐active responsive devices.  相似文献   

15.
We report herein a solvent‐free and microwaved‐assisted synthesis of several water soluble acyclic pentaheteroaryls containing 1,2,4‐oxadiazole moieties ( 1 – 7 ). Their binding interactions with DNA quadruplex structures were thoroughly investigated by FRET melting, fluorescent intercalator displacement assay (G4‐FID) and CD spectroscopy. Among the G‐quadruplexes considered, attention was focused on telomeric repeats together with the proto‐oncogenic c‐kit sequences and the c‐myc oncogene promoter. Compound 1 , and to a lesser extent 2 and 5 , preferentially stabilise an antiparallel structure of the telomeric DNA motif, and exhibit an opposite binding behaviour to structurally related polyoxazole ( TOxaPy ), and do not bind duplex DNA. The efficiency and selectivity of the binding process was remarkably controlled by the structure of the solubilising moieties.  相似文献   

16.
17.
18.
In investigating the binding interactions between the human telomeric RNA (TERRA) G‐quadruplex (GQ) and its ligands, it was found that the small molecule carboxypyridostatin (cPDS) and the GQ‐selective antibody BG4 simultaneously bind the TERRA GQ. We previously showed that the overall binding affinity of BG4 for RNA GQs is not significantly affected in the presence of cPDS. However, single‐molecule mechanical unfolding experiments revealed a population (48 %) with substantially increased mechanical and thermodynamic stability. Force‐jump kinetic investigations suggested competitive binding of cPDS and BG4 to the TERRA GQ. Following this, the two bound ligands slowly rearrange, thereby leading to the minor population with increased stability. Given the relevance of G‐quadruplexes in the regulation of biological processes, we anticipate that the unprecedented conformational rearrangement observed in the TERRA‐GQ–ligand complex may inspire new strategies for the selective stabilization of G‐quadruplexes in cells.  相似文献   

19.
20.
We have developed a straightforward synthetic pathway to a set of six photoactivatable G‐quadruplex ligands with a validated G4‐binding motif (the bisquinolinium pyridodicarboxamide PDC‐360A) tethered through various spacers to two different photo‐cross‐linking groups: benzophenone and an aryl azide. The high quadruplex‐versus‐duplex selectivity of the PDC core was retained in the new derivatives and resulted in selective alkylation of two well‐known G‐quadruplexes (human telomeric G4 and oncogene promoter c‐myc G4) under conditions of harsh competition. The presence of two structurally different photoactivatable functions allowed the selective alkylation of G‐quadruplex structures at specific nucleobases and irreversible G4 binding. The topology and sequence of the quadruplex matrix appear to influence strongly the alkylation profile, which differs for the telomeric and c‐myc quadruplexes. The new compounds are photoactive in cells and thus provide new tools for studying G4 biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号