首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation between dibenzo‐24‐crown‐8 ( 1 ) and diquat ( 2 ) was investigated in detail by NMR, MS and X‐ray analysis. It was found that dibenzo‐24‐crown‐8 and diquat formed a 1:1 complex 1 · 2 in acetone with Ka=2.0×102 L·mol?1, but, as shown by X‐ray analysis, a crystalline 2:1 host:guest inclusion complex 1 2· 2 was isolated, in which a single molecule of diquat is enclosed in the concave cavity provided by two dibenzo‐24‐crown‐8 host molecules. Both results are different from the previously assumed stoichiometry of the complexation between dibenzo‐24‐crown‐8 and diquat. This result enriches the range of host‐guest complexes based on dibenzo‐24‐ crown‐8 and provides new opportunities for developing more complicated structures and chemosensors for diquat.  相似文献   

2.
Herein, we report the host–guest‐type complex formation between the host molecules cucurbit[7]uril (CB[7]), β‐cyclodextrin (β‐CD), and dibenzo[24]crown‐8 ether (DB24C8) and a newly synthesized triphenylamine (TPA) derivative 1 X3 as the guest component. The host–guest complex formation was studied in detail by using 1H NMR, 2D NOESY, UV/Vis fluorescence, and time‐resolved emission spectroscopy. The chloride salt of the TPA derivative was used for recognition studies with CB[7] and β‐CD in an aqueous medium. The restricted internal rotation of the guest molecule on complex formation with either of these two host molecules was reflected in the enhancement of the emission quantum yield and the average excited‐state lifetime for the triphenylamine‐based excited states. Studies with DB24C8 as the host molecule were performed in dichloromethane, a medium that maximizes the noncovalent interaction between the host and guest fragments. The Förster resonance energy transfer (FRET) process involving DB24C8 and 1 (PF6)3, as the donor and acceptor fragments, respectively, was established by electrochemical, steady‐state emission, and time‐correlated single‐photon counting studies.  相似文献   

3.
In the structure of the complex of dibenzo‐18‐crown‐6 [systematic name: 2,5,8,15,18,21‐hexaoxatricyclo[20.4.0.09,14]hexacosa‐1(26),9,11,13,22,24‐hexaene] with 4‐methoxyanilinium tetrafluoroborate, C7H10NO+·BF4·C20H24O6, the protonated 4‐methoxyanilinium (MB‐NH3+) cation forms a 1:1 supramolecular rotator–stator complex with the dibenzo‐18‐crown‐6 molecule via N—H...O hydrogen bonds. The MB‐NH3+ group is attached from the convex side of the bowl‐shaped crown, in contrast with similar ammonium cations that nest in the curvature of the bowl. The cations are associated via C—H...π interactions, while the cations and anions are linked by weak C—H...F hydrogen bonds, forming cation–crown–anion chains parallel to [011].  相似文献   

4.
Two different counter‐ion‐free host–guest complexes have been prepared and isolated. These compounds were formed from two equally and opposite doubly‐charged species, the viologen guests 1 a 2+ and 1 b 2+ and the anti‐disulfodibenzo[24]crown‐8 [ DSDB24C8] 2? host, which gave rise to the 1:1 neutral complexes [ 1 a?DSDB24C8 ] and [ 1 b?DSDB24C8 ]. These species are held together by hydrogen bonding and π stacking, as well as strong electrostatic interactions. The investigation of these neutral ion‐paired supramolecular systems in solution and in the solid state allowed us to establish their co‐conformational preferences. Compound [ 1 a?DSDB24C8 ], with small methyl groups as substituents on the viologen unit, may adopt three different geometries, 1) an exo nonthreaded, 2) a partially threaded, and 3) a threaded arrangement, depending on the relative spatial orientation between the host and guest: The partially‐threaded structure is preferred in solution and in the solid state. The presence of bulky tert‐butylbenzyl groups in the viologen moiety in compound [ 1 b?DSDB24C8 ] restricts the possible geometrical arrangements to one: The exo nonthreaded arrangement. This structure was confirmed in the solid state by X‐ray crystallography. The stability of the neutral complexes in solution was determined by UV/Vis spectrophotometry. The stoichiometry of the complexes was established by continuous variation experiments, and overall equilibrium constants and ΔG° values were determined on the basis of dilution experiments. The results observed are a consequence of only the intrinsic stability of the complexes as there are no additional contributions from counter ions.  相似文献   

5.
Here we report the synthesis of a novel, easily available and rigid acyclic C-shaped host??clip[4]arene. It has the ability to bind electron-poor pyridinum salts in solution. A bipyridinum salt, paraquat, is found to have a 1:1 complexation stoichiometry in acetone but a 2:1 complexation stoichiometry in the solid state with clip[4]arene. Unlike traditional [2]pseudorotaxanes with structures of linear guest molecules threaded into macrocyclic hosts, the complex of clip[4]arene and paraquat is rather a [2]pseudoclipaxane where a linear molecule is threaded through a rigid acyclic C-shaped molecule. Furthermore, the complexation between clip[4]arene and paraquat is redox-controlled and can be reversibly regulated through the sequential addition of Zn powder and exposure to air.  相似文献   

6.
The structural complexity of mechanically interlocked molecules are very attractive to chemists owing to the challenges they present. In this article, novel mechanically interlocked molecules with a daisy‐chain‐containing hetero[4]rotaxane motif were efficiently synthesized. In addition, a novel integrative self‐sorting strategy is demonstrated, involving an ABB‐type (A for host, dibenzo‐24‐crown‐8 (DB24C8), and B for guest, ammonium salt sites) monomer and a macrocycle host, benzo‐21‐crown‐7 (B21C7), in which the assembled species in hydrogen‐bonding‐supported solvent only includes a novel daisy‐chain‐containing hetero[4]pseudorotaxane. The found self‐sorting process involves the integrative recognition between B21C7 macrocycles and carefully designed components simultaneously containing two types of secondary ammonium ions and a host molecule, DB24C8 crown ether. The self‐sorting strategy is integrative to undertake self‐recognition behavior to form one single species of pseudorotaxane compared with the previous report. This self‐sorting system can be used for the efficient one‐pot synthesis of a daisy‐chain‐containing hetero[4]rotaxane in a good yield. The structure of hetero[4]rotaxane was confirmed by 1H NMR spectroscopy and high‐resolution electrospray ionization (HR‐ESI) mass spectrometry.  相似文献   

7.
The threading of biomolecules through pores or channels in membranes is important to validate the physiological activities of cells. To aid understanding of the controlling factors required for the translocation in space with confined size and distorted conformation, it is desirable to identify experimental systems with minimized complexity. We demonstrate the mechanism of a linear guest L1 threading into a tris(crown ether) host TC with a combinational distorted cavity to form a triply interlocked [2]pseudorotaxane 3in‐[ L1 ? TC ]. An inchworm‐motion mechanism is proposed for the process. For the forward‐threading steps that lead to the formation of higher‐order interlocked species, guest L1 must adopt a bent conformation to find the next crown ether cavity. Two simplified models are applied to investigate the self‐assembly dynamic of 3in‐[ L1 ? TC ]. Kinetic NMR spectroscopic and molecular dynamics (MD) studies show that formation of the singly penetrated species is fast, whereas formation of the doubly and triply threaded species is several orders of magnitude slower. During threading the freedom of both the guest L1 and host TC gradually decrease due to their interactions. This results in a significant entropy effect for the threading dynamic, which is also observed for the threading of a biomolecular chain through a channel.  相似文献   

8.
A new singly charged pyridinium axle was prepared and combined with disulfonated dibenzo[24]crown-8 ether to form a [2]pseudorotaxane. The reaction of this new, anionic ligand with Zn(II) ions, under various crystallization conditions, resulted in the formation of three metal-organic rotaxane framework (MORF) solids; a one-periodic ML coordination polymer and two, two-periodic ML(2) square grid frameworks. The layers of square grids can be pillared to create full three-periodic MORF structures, which have completely neutral frameworks and are porous. These three-periodic materials represent the first examples of neutral porous MOFs in which one (or more) of the linkers is a mechanically interlocked molecule (MIM).  相似文献   

9.
A rationally designed 2,3,10,11‐tetrahydroxytetraphenylene ( 1 ) has been synthesized. Employing 1 as a building block, a structurally novel tweezer‐like host 2 containing dibenzo‐24‐crown‐8 moieties has been prepared. Host 2 showed excellent molecular‐recognition ability toward paraquat (=1,1′‐dimethyl‐4,4′‐bipyridinium dichloride) derivative 3a to form a 1 : 1 stable complex in solution.  相似文献   

10.
Crown ether‐functionalized dendronized copolymers with an alternating structure were synthesized by free radical copolymerization of styrene derivatives pendent with Percec‐type polyether dendron of two generations and maleimide pendent with dibenzo[24]crown‐8 (24C8). Novel dendronized copolymers bearing tremendous host molecular cavities have been characterized by 1H NMR, 13C NMR spectroscopy, static light scattering (SLS), and differential scanning calorimetry (DSC) analysis as well as atomic force microscopy (AFM) techniques. Host–guest interactions between 24C8 units dispersed along the dendronized copolymers and organic ammonium salts of pyrene, anthracene, and phenol have been explored. These molecular recognition processes can be monitored by 1H NMR spectroscopy and fluorescence excitation spectroscopy. These results showed that the supramolecular polymer systems are acid–base controllable, demonstrating that dendronized copolymers may be modified reversibly via host–guest interaction. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Sterically‐engineered rigid trigonal molecular modules based on 1,3,5‐tri(4‐hydroxyphenyl)benzenes H1 and H2 undergo O‐H???O hydrogen‐bonded self‐assembly into eight‐fold catenated hexagonal (6,3) and two‐fold interpenetrated undulated square (4,4) networks, respectively. In the presence of [18]crown‐6 as a guest, the triphenol H1 is found to self‐assemble into a honeycomb network with hexagonal voids created between three triphenol building blocks. The guest [18]crown‐6 molecules are found to be nicely nested in hexagonal enclosures. The empty spaces within the crowns can be further filled with neutral (MeOH/water, MeOH/MeNO2) or ionic guest species such as KI/KAcAc to furnish novel multicomponent assemblies, that is, guest ? guest ? host, that typify Russian dolls. In contrast, triphenol H2 is found to yield analogous multicomponent molecular crystals in which the guest crown–K+ acts as a spacers in the hydrogen‐bonded self‐assembly that leads to distorted chicken wire networks.  相似文献   

12.
Herein, we report the host-guest-type complex formation between the host molecules cucurbit[7]uril (CB[7]), β-cyclodextrin (β-CD), and dibenzo[24]crown-8 ether (DB24C8) and a newly synthesized triphenylamine (TPA) derivative 1X(3) as the guest component. The host-guest complex formation was studied in detail by using (1)H?NMR, 2D NOESY, UV/Vis fluorescence, and time-resolved emission spectroscopy. The chloride salt of the TPA derivative was used for recognition studies with CB[7] and β-CD in an aqueous medium. The restricted internal rotation of the guest molecule on complex formation with either of these two host molecules was reflected in the enhancement of the emission quantum yield and the average excited-state lifetime for the triphenylamine-based excited states. Studies with DB24C8 as the host molecule were performed in dichloromethane, a medium that maximizes the noncovalent interaction between the host and guest fragments. The F?rster resonance energy transfer (FRET) process involving DB24C8 and 1(PF(6))(3), as the donor and acceptor fragments, respectively, was established by electrochemical, steady-state emission, and time-correlated single-photon counting studies.  相似文献   

13.
The increasing complexity of self‐assembled supramolecules generates the need for analytical techniques that can accurately elucidate their structures. Here, we explore the ability of tandem mass spectrometry to deliver structural information on a series of self‐sorted crown ether/ammonium pseudorotaxanes. Of these intertwined molecules, different charge states are accessible and the effects of Coulomb interactions on the fragmentation pattern can be examined. Three different cases can be distinguished: (1) one or more counterions are present in the complex and compete with the crown for binding to the ammonium ion. This destabilizes the supramolecular bond. (2) In multiply charged complexes, charge repulsion significantly alters the fragmentation behavior as compared with singly charged ions. (3) If guest and host are both charged, the supramolecular bond becomes very weak. The different charge states provide different pieces of information about the supramolecules under study. Although singly charged complexes provide data on the building block connectivity, the doubly charged analogs are more reliable with respect to complex stoichiometry. As there are several factors which may cause differences in the gas phase and solution behavior of supramolecules (the presence and absence of solvation, changes in the strength of non‐covalent interactions upon ionization), it is important to establish well understood correlations between the complexes' gas‐phase behavior and their solution structures. A more detailed understanding will help to characterize the structures of even more complex supramolecular architectures by mass spectrometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Here we report the design and syntheses of two new triptycene-based rigid acyclic C-shaped hosts, clip[5]arenes C[5]OH and C[5]ME, and the strong host–guest complexation between C[5]OH and an electron-poor bipyridinium salt, paraquat G. The Ka value for the host–guest complex C[5]OH???G was calculated to be (1.09?±?0.36)??×??105?M?1 in acetone by using a non-linear curve-fitting method based on the UV–vis absorption titration experiments. Furthermore, based on this new host–guest recognition motif, a novel pseudopolyrotaxane-like supramolecular structure was constructed with C[5]OH threaded on polyviologen polymer VP-10.  相似文献   

15.
Dibenzo‐24‐crown‐8‐terminated polystyrene ( 5 ) was chain extended to “dimeric” 8 by pseudorotaxane formation with a ditopic guest, α,ω‐bis[p‐(N‐benzylammoniomethyl)phenoxy]heptane bis(hexafluorophosphate) ( 7 ). The three‐armed star polymer 11 was similarly formed by complexation of the dibenzo‐24‐crown‐8‐terminated polystyrene ( 5 ) with a tritopic secondary ammonium salt, 1,3,5‐tris[p‐(benzylammoniomethyl)phenyl]benzene tris(hexafluorophosphate) ( 10 ). Another three‐armed star polymer 13 was self‐assembled from dibenzo‐24‐crown‐8‐terminated polystyrene ( 5 ) and a tetratopic paraquat compound, 1,2,4,5‐tetrakis{pN‐[(N′‐methyl‐4,4′‐bipyridinium)methylphenyl]}benzene octakis(hexafluorophosphate) ( 12 ). The above chain extension and star polymer formation processes seemed to be cooperative; that is, the second and third complexation steps proceed with stepwise higher efficiencies than statistically expected. Dibenzo‐24‐crown‐8‐terminated polystyrene ( 5 ) was chain extended with secondary ammonium terminated polystyrene 14 , forming 16 , and also self‐assembled with a secondary ammonium ion terminated polyisoprene 15 to form supramolecular block copolymer 17 . These processes were examined by NMR, mass spectrometry and viscometery. Thus, although binding in these systems is not particularly strong (association constants <104 M?1), these examples provide proof‐of‐principle that pseudorotaxane formation is a viable concept for chain extension and self‐assembly of novel types of block copolymers and star polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3518–3543, 2009  相似文献   

16.
Two novel tribranched [4]rotaxanes with a 1,3,5‐triphenylene core and three rotaxane arms have been designed, synthesized, and characterized by 1H and 13C NMR spectroscopies and HR‐ESI mass spectrometry. [4]Rotaxanes 1 and 2 each possess the same three‐armed skeleton. Each arm incorporates two distinguishable binding sites for a dibenzo[24]crown‐8 ring, namely a dibenzylammonium site and an N‐methyltriazolium site, and is terminated by a 4‐morpholino‐naphthalimide fluorophore as a stopper. [4]Rotaxane 1 has three di‐ferrocene‐functionalized dibenzo[24]crown‐8 rings whereas 2 has three simple dibenzo[24]crown‐8 rings interlocked with the thread component. Uniform shuttling motions of the three macrocycles in both 1 and 2 can be driven by external acid–base stimuli, which were confirmed by 1H NMR spectroscopy. However, [4]rotaxanes 1 and 2 show distinct modes of fluorescence modulation in response to external acid–base stimuli. [4]Rotaxane 1 exhibits a remarkable fluorescence decrease in response to the addition of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a base, which can displace the ferrocene‐functionalized macrocycle from the dibenzylammonium station to the N‐methyltriazolium station. In contrast, the fluorescence intensity of [4]rotaxane 2 showed an enhancement with the addition of DBU. Time‐resolved fluorescence measurements have been performed. The different photoinduced electron‐transfer processes responsible for the fluorescence changes in the two molecular systems are discussed. Topological structures of this kind have significant potential for the design and construction of large and complex assemblies with controllable functions.  相似文献   

17.
Six types of histamine potentiometric sensors are developed. They are based on using dibenzo‐30‐crown‐10 (DB30C10) with potassium tetrakis(p‐chlorophenyl)borate lipophilic additive (Type I), dibenzo‐30‐crown‐10 without additive (Type II), dibenzo‐24‐crown‐8 (DB24C8) with the same additive (Type III), dibenzo‐24‐crown‐8 without additive (Type IV), dibenzo‐18‐crown‐6 with the additive (Type V) and dibenzo‐18‐crown‐6 without additive (Type VI) as neutral carriers for histamine. Sensors based on dibenzo‐30‐crown‐10 with (PTp‐C1PB) lipophilic additive (Type I) and dibenzo‐30‐crown‐10 without additive (Type II) show good response. The other sensors Types III–VI show poor response in terms of calibration range and slope.  相似文献   

18.
Inclusion complexes of cyclobis(paraquat‐p‐phenylene) and various aromatic molecules in their neutral and oxidized form were studied at the LMP2/6‐311+G**//BHandHLYP/6‐31G* level of theory, which represents the highest level theoretical study to date for these complexes. The results show that it is dispersion interaction that contributes most to the binding energy. One electron oxidation of a guest molecule leads to complete dissociation of inclusion complex generating strong repulsion potential between guest and host molecules. Electrostatic interactions also can play an important role, provided the guest molecule has a dipole moment; however, dispersion interactions always dominate in binding energy. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
An equilibrium treatment of complexation of neutral hosts with dicationic guests having univalent counterions includes two possible modes: (1) dissociation of the ion pair prior to interaction of the free dication with the host to produce a complex that is not ion paired and (2) direct complexation of the ion pair to produce an ion paired complex. This treatment is easily modified for complexation of neutral guests by dianionic hosts, or divalent hosts by neutral guests. The treatment was tested by a study of fast-exchange host-guest systems based on paraquats or viologens (G(2+)2X(-)) and crown ethers (H). The bis(hexafluorophosphate) salts of viologens are predominantly ion paired in acetone; the value of the dissociation constant of paraquat bis(hexafluorophosphate) was determined to be 4.64 (+/- 1.86) x 10(-4) M(2). The complex based on dibenzo-24-crown-8 and paraquat bis(hexafluorophosphate) is not ion paired in solution, resulting in concentration dependence of the apparent association constant K(a,exp), (= [complex]/[H][G(2+)2X(-)]) which is well fit by the treatment, according to mode (1), yielding K(ap) = 106 (+/-42) M(-1). However, the four complexes of two different bis(m-phenylene)-32-crown-10 derivatives and bis(p-phenylene)-34-crown-10 with paraquat derivatives are all ion paired in solution and therefore K(a,exp) is not concentration dependent for these systems, mode (2). X-ray crystal structures support these solution-based assessments in that there is clearly ion pairing of the cationic guest with its PF(6)(-) counterions in the solid states of the latter four examples in which access of the counterions to the guests is granted by the relatively large cavities of the hosts and dispositions of the guest species within them.  相似文献   

20.
Zong QS  Chen CF 《Organic letters》2006,8(2):211-214
[reaction: see text] A novel triptycene-based cylindrical macrotricyclic polyether containing two dibenzo[24]crown-8 cavities has been synthesized and proved to be a highly efficient host for the complexation with paraquat derivatives. Consequently, a new kind of very stable pseudorotaxane-type complex was formed in solution and in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号