共查询到20条相似文献,搜索用时 15 毫秒
1.
Dr. Siree Tangbunsuk Dr. George R. Whittell Dr. Maxim G. Ryadnov Dr. Guido W. M. Vandermeulen Prof. Derek N. Woolfson Prof. Ian Manners 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(9):2524-2535
Conjugates of poly(ferrocenyldimethylsilane) (PFDMS) with Ac‐(GA)2‐OH, Ac‐A4‐OH, Ac‐G4‐OH and Ac‐V4‐OH have been prepared by reaction of the tetrapeptide units with the amino‐terminated metallopolymer. The number average degree of polymerisation (DPn) of the PFDMS was approximately 20 and comparable materials with shorter (DPn≈10) and/or amorphous chains have been prepared by the same procedure. Poly(ferrocenylethylmethylsilane) (PFEMS) was employed for the latter purpose. All conjugates were characterised by GPC, MALDI‐TOF MS, NMR and IR spectroscopy. With the exception of Ac‐V4‐PFDMS20, all materials exhibited some anti‐parallel β‐sheet structure in the solid state. The self‐assembly of the conjugates was studied in toluene by DLS. The vast majority of the materials, irrespective of peptide sequence or chain crystallinity, afforded fibres consisting of a peptidic core surrounded by a PFS corona. These fibres were found in the form of cross‐linked networks by TEM and AFM. The accessibility of the chemically reducing PFS corona has been demonstrated by the localised formation of silver nanoparticles on the surface of the fibres. 相似文献
2.
Yao‐Rong Zheng Hai‐Bo Yang Prof. Dr. Koushik Ghosh Liang Zhao Dr. Peter J. Stang Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(29):7203-7214
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described. 相似文献
3.
Jack K. Clegg Dr. Simon S. Iremonger Dr. Michael J. Hayter Peter D. Southon Dr. René B. Macquart Dr. Martin B. Duriska Dr. Paul Jensen Dr. Peter Turner Dr. Katrina A. Jolliffe Prof. Cameron J. Kepert Prof. George V. Meehan Prof. Leonard F. Lindoy Prof. 《Angewandte Chemie (International ed. in English)》2010,49(6):1075-1078
4.
5.
Hanna Jędrzejewska Michał Wierzbicki Dr. Piotr Cmoch Prof. Kari Rissanen Prof. Agnieszka Szumna 《Angewandte Chemie (International ed. in English)》2014,53(50):13760-13764
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly. 相似文献
6.
Xinbo Shi Ye Zhao Haiyang Gao Ling Zhang Fangming Zhu Qing Wu 《Macromolecular rapid communications》2012,33(5):374-379
A novel polymerization methodology for efficient synthesis of hyperbranched polyethylene amphiphiles by chain walking polymerization (CWP) followed by RAFT polymerization has been developed. Hyperbranched polyethylene with hydroxyl ends (HBPE‐OHs) is first synthesized via chain walking copolymerization of ethylene with 2‐hydroxyethyl acrylate with Pd‐α‐diimine catalyst. The hydroxyl groups of hyperbranched polyethylene are then converted into thiocarbonyl thio moieties by an esterification reaction with trithiocarbonate 3‐benzylsulfanylthiocarbonyl sulfanylpropionic acid (BSPA). The hyperbranched polyethylene with thiocarbonyl thio moiety ends (HBPE‐BSPAs) is used as a macro‐RAFT agent for the synthesis of hyperbranched polyethylene amphiphiles, HBPE‐PDMAEMAs, by RAFT polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA). The resultant HBPE‐PDMAEMAs can self‐assemble to form supramolecular polymer vesicles in aqueous solution. A preliminary investigation on thermo‐ and pH‐responsive behaviors of the polymer is also reported. 相似文献
7.
Jan Gebers Damien Rolland Holger Frauenrath Prof. 《Angewandte Chemie (International ed. in English)》2009,48(25):4480-4483
A limited number of poly(ethylene oxide)‐substituted perylene bisimides, some of which are equipped with terpyridine ligands for transition‐metal coordination (see structure), combine different types of noncovalent interactions to yield optoelectronically active organic materials with different types of supramolecular morphologies.
8.
9.
Dr. Partha S. Ghosh Prof. Dr. Andrew D. Hamilton 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(8):2361-2365
We report here the noncovalent synthesis of thermosensitive dendrimers. Short oligoguanosine strands were linked to the focal point of a dendron by using “click chemistry”, and quadruplex formation was used to drive the self‐assembly process in the presence of metal ions. The dynamic nature of these noncovalent assemblies can be exploited to create combinatorial libraries of dendrimers as demonstrated by the co‐assembly of two components. These supramolecular dendrimers showed thermoresponsive behavior that can be tuned by varying the templating cations or the number of guanines in the oligonucleotide strand. 相似文献
10.
Zehuan Huang Liulin Yang Yiliu Liu Prof. Zhiqiang Wang Dr. Oren A. Scherman Prof. Xi Zhang 《Angewandte Chemie (International ed. in English)》2014,53(21):5351-5355
A new method in which supramolecular polymerization is promoted and controlled through self‐sorting is reported. The bifunctional monomer containing p‐phenylene and naphthalene moieties was prepared. Supramolecular polymerization is promoted by selective recognition between the p‐phenylene group and cucurbit[7]uril (CB[7]), and 2:1 complexation of the naphthalene groups with cucurbit[8]uril (CB[8]). The process can be controlled by tuning the CB[7] content. This development will enrich the field of supramolecular polymers with important advances towards the realization of molecular‐weight and structural control. 相似文献
11.
The reversibility of boronic acid and diol interaction makes it an ideal candidate for the design of self‐assembled molecular structures. Reversibility is required to ensure that the thermodynamically most stable structure is formed. Reversibility also ensures that any errors produced during the assembly process are not permanent. 相似文献
12.
Herein, the relationship between the supramolecularly self‐assembled nanostructures and the chemical structures of coil‐rod‐coil molecules is discussed. A series of nonamphiphilic coil‐rod‐coil molecules with different alkyl chains, central mesogenic groups, and chemical linkers were designed and synthesized. The solvent‐mediated supramolecular self‐assembling of these coil‐rod‐coil molecules resulted in rolled‐up nanotubes, nanofibers, submicron sized belts, needle‐like microcrystals, and amorphous structures. The self‐assembling behaviors of these coil‐rod‐coil molecules have been systematically investigated to reveal the relationship between the supramolecularly self‐assembled nanostructures and their chemical structures. With respect to the formation of rolled‐up nanotubes by self‐assembly of coil‐rod‐coil molecules, we have systematically investigated the following three influencing structural factors: 1) the alkyl chain length; 2) the central mesogenic group; (3) the linker type. These studies disclosed the key structural features of coil‐rod‐coil molecules for the formation of rolled‐up nanotubes. 相似文献
13.
Preparation of an Organometallic Molecular Square by Self‐Assembly of Phosphorus‐Containing Building Blocks 下载免费PDF全文
Jennifer Malberg Michael Bodensteiner Daniel Paul Thomas Wiegand Hellmut Eckert Robert Wolf 《Angewandte Chemie (International ed. in English)》2014,53(10):2771-2775
Molecular squares are among the most common supramolecular architectures, but phospha‐organometallic complexes have not been used as building blocks for this type of structure. Herein we describe the formation of the molecular square [Au{Co(P2C2tBu2)2}]4 ( 1 ) by the self‐assembly of anionic 1,3‐diphosphacyclobutadiene cobalt complexes and gold(I) cations. The X‐ray crystallographic determination of the molecular structure of 1 is complemented by solid‐state 31P and 13C NMR investigations. High‐level DFT calculations confirm the assignment of the 31P and 13C NMR resonances. 相似文献
14.
15.
Eva M. López‐Vidal Prof. Marcos D. García Prof. Carlos Peinador Prof. José M. Quintela 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(5):2259-2267
On the attempted synthesis of a series of homo‐ and heterotrimetallic [2]catenanes by the self‐assembly of a 2‐(pyridin‐4‐ylmethyl)‐2,7‐diazapyrenium ligand, (ethylenediamine)palladium(II) or platinum(II) nitrate, and a dioxoaryl bis(N‐monoalkyl‐4,4′‐bipyridinium) salt as building blocks, both the one‐pot direct self‐assembly of the components and the so called “magic ring” approach fail to produce the expected trinuclear [2]catenanes under thermodynamically driven conditions. However, one of the target supramolecules is obtained by following a stepwise protocol, consisting of the threading of a dinuclear PtII metallacycle and the dioxoaryl bis(N‐monoalkyl‐4,4′‐bipyridinium) axle, followed by kinetically controlled PtII‐directed cyclization of the corresponding pseudorotaxane. 相似文献
16.
Synthesis of Aromatic Macrocyclic Amphiphiles and their Self‐Assembling Behavior in Aqueous Solution
A triblock amphiphilic macrocycle consisting of a macrocyclic aromatic segment, a hydrophilic oligo(ethylene oxide) branch, and a hydrophobic alkyl dendron is successfully synthesized and characterized. The resulting cyclic amphiphile is observed to self‐assemble into hollow double‐layered capsules in aqueous solution, as confirmed by dynamic light scattering and cryogenic transmission electron microscopy investigations. The capsules are able to encapsulate hydrophobic guest molecules through aromatic interactions with high stability.
17.
Shrinivas Venkataraman Zarir Ashraf Chowdhury Ashlynn L. Lee Yen Wah Tong Isamu Akiba Yi Yan Yang 《Macromolecular rapid communications》2013,34(8):652-658
Readily water‐soluble PEGylated amphiphiles containing bis‐thiourea‐based molecular recognition units at the interface of hydrophobic and hydrophilic blocks are developed. Self‐assembly of these amphiphiles is found to be dependent on the exact chemical composition of the hydrophobic component. Elongated, spherical, and disk‐like micelles are formed with the change in hydrophobic group from stearyl (2A), oleyl (2B), and dodecanol (2C), respectively. The length of the rod‐like elongated micelles formed by 2A could be tuned by thermal treatment as well. Synthesis and detailed structural characterization of these amphiphiles by TEM, DSC, synchrotron SAXS techniques are reported. Organic solvent‐free direct aqueous encapsulation of doxorubicin, an anticancer drug into these nanostructures is demonstrated.
18.
Mark Kuil IrisM. Puijk ArjanW. Kleij DuncanM. Tooke AnthonyL. Spek Joost N.H. Reek 《化学:亚洲杂志》2009,4(1):50-57
We report the assembly of supramolecular boxes and coordination polymers based on a rigid bis‐zinc(II)‐salphen complex and various ditopic nitrogen ligands. The use of the bis‐zinc(II)‐salphen building block in combination with small ditopic nitrogen ligands gave organic coordination polymers both in solution as well as in the solid state. Molecular modeling shows that supramolecular boxes with small internal cavities can be formed. However, the inability to accommodate solvent molecules (such as toluene) in these cavities explains why coordination polymers are prevailing over well‐defined boxes, as it would lead to an energetically unfavorable vacuum. In contrast, for relatively longer ditopic nitrogen ligands, we observed the selective formation of supramolecular box assemblies in all cases studied. The approach can be easily extended to chiral analogues by using chiral ditopic nitrogen ligands. 相似文献
19.
Ignacio Alfonso Dr. Miriam Bru Dr. M. Isabel Burguete Dr. Eduardo García‐Verdugo Dr. Santiago V. Luis Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(4):1246-1255
The self‐assembling abilities of several pseudopeptidic macrocycles have been thoroughly studied both in the solid (SEM, TEM, FTIR) and in solution (NMR, UV, CD, FTIR) states. Detailed microscopy revealed large differences in the morphology of the self‐assembling micro/nanostructures depending on the macrocyclic chemical structures. Self‐assembly was triggered by the presence of additional methylene groups or by changing from para to meta geometry of the aromatic phenylene backbone moiety. More interestingly, the nature of the side chain also plays a fundamental role in some of the obtained nanostructures, thus producing structures from long fibers to hollow spheres. These nanostructures were obtained in different solvents and on different surfaces, thus implying that the chemical information for the self‐assembly is contained in the molecular structure. Dilution NMR studies (chemical shift and self‐diffusion rates) suggest the formation of incipient aggregates in solution by a combination of hydrogen‐bonding and π–π interactions, thus implicating amide and aryl groups, respectively. Electronic spectroscopy further supports the π–π interactions because the compounds that lead to fibers show large hypochromic shifts in the UV spectra. Moreover, the fiber‐forming macrocycles also showed a more intense CD signature. The hydrogen‐bonding interactions within the nanostructures were also characterized by attenuated total‐reflectance FTIR spectroscopy, which allowed us to monitor the complete transition from the solution to the dried nanostructure. Overall, we concluded that the self‐assembly of this family of pseudopeptidic macrocycles is dictated by a synergic action of hydrogen‐bonding and π–π interactions. The feasibility and geometrical disposition of these interactions finally render a hierarchical organization, which has been rationalized with a proposal of a model. The understanding of the process at the molecular level has allowed us to prepare hybrid soft materials. 相似文献
20.
Weizhong Yuan Jinju Wang Lulin Li Hui Zou Hua Yuan Jie Ren 《Macromolecular rapid communications》2014,35(20):1776-1781
A supramolecular block copolymer is prepared by the molecular recognition of nucleobases between poly(2‐(2‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol) methacrylate)‐SS‐poly(ε‐caprolactone)‐adenine (P(MEO2MA‐co‐OEGMA)‐SS‐PCL‐A) and uracil‐terminated poly(ethylene glycol) (PEG‐U). Because the block copolymer is linked by the combination of covalent (disulfide bond) and noncovalent (A U) bonds, it not only has similar properties to conventional covalently linked block copolymers but also possesses a dynamic and tunable nature. The copolymer can self‐assemble into micelles with a PCL core and P(MEO2MA‐co‐OEGMA)/PEG shell. The size and morphologies of the micelles/aggregates can be adjusted by altering the temperature, pH, salt concentration, or adding dithiothreitol (DTT) to the solution. The controlled release of Nile red is achieved at different environmental conditions.