首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural interactions that enable electron transfer to cytochrome‐P450 (CYP450) from its redox partner CYP450‐reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane‐bound functional complex to reveal interactions between the full‐length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome‐b5 (cyt‐b5), Arg 125 on the C‐helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein–protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.  相似文献   

2.
细胞色素p450的结构与催化机理   总被引:1,自引:0,他引:1  
王斌  李德远 《有机化学》2009,29(4):658-662
细胞色素P450酶是广泛存在的含亚铁血红素单加氧酶, 参与甾类激素的合成、脂溶性维生素代谢、多不饱和脂肪酸转换为生物活性分子, 以及致癌作用和药物代谢. 综述了细胞色素p450结构与功能的关系, 特别是细胞色素P450活性位点经历大幅度开/关运动结合底物和释放产物以及电子迁移途径.  相似文献   

3.
NADPH‐cytochrome P450 reductase (CPR) serves as electron donor for cytochrome P450 catalyzed monooxygenase reactions utilizing flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) as electron transfer cofactors. Here, stable films of human and rabbit CPRs with didodecyldimethylammonium bromide (DDAB), dimyristoylphosphatidyl choline (DMPC), and poly(diallyldimethylammonium) (PDDA) were made on pyrolytic graphite (PG) electrodes for comparative structural and electrochemical studies. CD and UV‐VIS absorbance spectra suggested that near native CPR conformation is retained in PDDA films, and some conformational changes occur in DMPC or DDAB films. Cyclic voltammetry of these films gave quasireversible pairs of peaks at average formal potential ?0.246±0.008 V vs. NHE. In human CPR‐DDAB (H‐CPR‐DDAB), a second pair of peaks at +0.317 V vs. NHE was found that depended strongly on identity of buffer and salt. Excepting H‐CPR in DDAB, films showed similar voltammetry, formal potentials, and ks values. While CPR‐PDDA films had near native CPR structures, electrochemical parameters did not differ significantly from CPR‐DMPC films. The relative independence of film voltammetry from the influence of film materials for CPRs is in contrast with heme iron proteins that, while retaining near native structures, have formal potentials that depend significantly on identity of the film material.  相似文献   

4.
In this work we present an investigation on the behavior of microsomes containing human cytochrome P450 in cyclic voltammetry for drug detection. The microsomes are adsorbed on the surface of multi‐walled carbon nanotubes by drop‐casting. We demonstrate that the hydrophobic and highly electroactive surface of multi‐walled carbon nanotubes enables to distinguish more clearly the contributions in reduction peak current attributed to the enzymatic components of microsomes. Voltammetric measurements were performed under several experimental conditions with two cytochrome P450‐isoforms, 1A2 and 3A4. We show that the reduction current for the component of cytochrome P450‐microsome linearly increases in the presence of a substrate.  相似文献   

5.
Abstract

This paper describes a specialized database dedicated exclusively to the cytochrome P450 superfamily. The system provides the impression of superfamily's nomenclature and describes structure and function of different P450 enzymes. Information on P450-catalyzed reactions, substrate preferences, peculiarities of induction and inhibition is available through the database management system. Also the source genes and appropriate translated proteins can be retrieved together with corresponding literature references.

Developed programming solution provides the flexible interface for browsing, searching, grouping and reporting the information. Local version of database manager and required data files are distributed on a compact disk. Besides, there is a network version of the software available on Internet. The network version implies the original mechanism. which is useful for the permanent online extension of the data scope.  相似文献   

6.
Cancer is still a growing public health problem, especially breast cancer that is one of the most important cancers in women. Chemotherapy, even though a successful treatment, is accompanied by severe side effects. Moreover, most of the drugs used for chemotherapy are administered as prodrugs and need to be transformed to the active form by cytochromes P450 (CYPs). In addition, increasing numbers of cancer tissues show lower CYP activity than the surrounding healthy tissues in which prodrugs are preferentially activated causing cytotoxicity. Here, the design of a functionalized cytochrome P450 bioconjugate is reported as nanovehicle for the enzyme direct delivery to the tumor tissue in order to improve the local drug activation. MCF‐7 breast cancer cells are treated with CYP‐polyethylene glycol bioconjugate functionalized folic acid, where it activates the prodrug tamoxifen and significantly reduces the dose of tamoxifen needed to kill the tumor cells. The CYP bioconjugate covered with polyethylene glycol shows no immunogenic activity. The advantages of increasing the site‐specific CYP activity in tumor tissues are discussed.

  相似文献   


7.
细胞色素P450单加氧酶具有催化活性混杂性的特点,可以催化多种氧化反应,因而在生物催化领域受到了极大的关注。然而P450单加氧酶往往存在催化活性低、稳定性差、区域和立体选择性不理想等问题,从而限制了其在生物催化领域的广泛运用。蛋白质定向进化的发展与运用为改善P450单加氧酶的催化性能提供了有效的途径,而一种高效的高通量筛选策略是保证酶蛋白定向进化成功实施的关键。本文综述了P450单加氧酶定向进化过程中高通量筛选策略的最新进展。  相似文献   

8.
Cytochrome P450s (P450) are important enzymes in biology with useful biochemical reactions in, for instance, drug and xenobiotics metabolisms, biotechnology, and health. Recently, the crystal structure of a new member of the CYP116B family has been resolved. This enzyme is a cytochrome P450 (CYP116B46) from Tepidiphilus thermophilus (P450-TT) and has potential for the oxy-functionalization of organic molecules such as fatty acids, terpenes, steroids, and statins. However, it was thought that the opening to its hitherto identified substrate channel was too small to allow organic molecules to enter. To investigate this, we performed molecular dynamics simulations on the enzyme. The results suggest that the crystal structure is not relaxed, possibly due to crystal packing effects, and that its tunnel structure is constrained. In addition, the simulations revealed two key amino acid residues at the mouth of the channel; a glutamyl and an arginyl. The glutamyl’s side chain tightens and relaxes the opening to the channel in conjunction with the arginyl’s, though the latter’s side chain is less dramatically changed after the initial relaxation of its conformations. Additionally, it was observed that the effect of increased temperature did not considerably affect the dynamics of the enzyme fold, including the relative solvent accessibility of the amino acid residues that make up the substrate channel wall even as compared to the changes that occurred at room temperature. Interestingly, the substrate channel became distinguishable as a prominent tunnel that is likely to accommodate small- to medium-sized organic molecules for bioconversions. That is, P450-TT has the ability to pass appropriate organic substrates to its active site through its elaborate substrate channel, and notably, is able to control or gate any molecules at the opening to this channel.  相似文献   

9.
The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced were oxidised with high activity by the S244D mutant (product formation rates >60 nmol.(nmol-CYP)−1.min−1) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S-oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98 %). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereoselective hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.  相似文献   

10.
There is intense interest in late‐stage catalytic C?H bond functionalization as an integral part of synthesis. Effective catalysts must have a broad substrate range and tolerate diverse functional groups. Drug molecules provide a good test of these attributes of a catalyst. A library of P450BM3 mutants developed from four base mutants with high activity for hydrocarbon oxidation produced human metabolites of a panel of drugs that included neutral (chlorzoxazone, testosterone), cationic (amitriptyline, lidocaine) and anionic (diclofenac, naproxen) compounds. No single mutant was active for all the tested drugs but multiple variants in the library showed high activity with each compound. The high conversions enabled full product characterization that led to the discovery of the new P450 reaction type of oxidative decarboxylation of an α‐hydroxy carboxylic acid and the formation a protected imine from an amine, offering a novel route to α‐functionalization of amines. The substrate range and varied product profiles suggest that this library of enzymes is a good basis for developing late‐stage C?H activation catalysts.  相似文献   

11.
碳氢键选择氧化是合成化学领域的重要课题,其中烷烃选择性羟化反应更是面临着化学选择性、区域选择性和立体选择性等多重挑战.细胞色素P450酶广泛分布于动植物和微生物体内,是公认的多功能生物氧化催化剂. P450酶对惰性C—H键的选择性氧化具有独特优势,在催化烷烃选择性羟化反应方面拥有巨大潜力.本综述简述了P450单加氧酶及其催化烷烃选择性羟化的反应机理,梳理了来自CYP153家族、CYP52家族和其他家族的天然P450酶催化各类烷烃底物的氧化反应和选择性,讨论了理性设计和定向进化策略在开发烷烃羟化P450突变酶过程中的经典案例,介绍了底物工程、诱饵分子、双功能小分子协同催化等几种化学活化P450酶的策略及其在烷烃羟化上的应用,探讨了P450酶在烷烃选择性羟化方面所面临的挑战和解决途径,并展望了其应用前景.  相似文献   

12.
13.
14.
We have studied the characterization of thermophilic cytochrome P450 (P450st)‐didodecyldimethylammonium bromide (DDAB) films by using UV‐vis absorption, resonance Raman spectroscopy, and electrochemical methods. The observed Raman spectrum indicated near‐native conformation of the heme iron in DDAB film on the surface of a glass slide, while on the surface of a plastic‐formed carbon (PFC) electrode, the conformation of P450st‐DDAB was very similar to that of heme‐DDAB film, suggesting the release of heme from P450st in DDAB films on PFC electrodes. When NaBr was added as salt to the casting solution, the result of Raman spectrum indicated near‐native conformation of P450st in DDAB film even on the PFC electrode, but no redox potential of P450st which has near native structure was observed. This study suggests the essential experimental conditions when working with heme protein‐DDAB films as, in some cases, heme iron from proteins is released on the surface of the electrode.  相似文献   

15.
The arylomycin antibiotics are potent inhibitors of bacterial type I signal peptidase. These lipohexapeptides contain a biaryl structural motif reminiscent of glycopeptide antibiotics. We herein describe the functional and structural evaluation of AryC, the cytochrome P450 performing biaryl coupling in biosynthetic arylomycin assembly. Unlike its enzymatic counterparts in glycopeptide biosynthesis, AryC converts free substrates without the requirement of any protein interaction partner, likely enabled by a strongly hydrophobic cavity at the surface of AryC pointing to the substrate tunnel. This activity enables chemo-enzymatic assembly of arylomycin A2 that combines the advantages of liquid- and solid-phase peptide synthesis with late-stage enzymatic cross-coupling. The reactivity of AryC is unprecedented in cytochrome P450-mediated biaryl construction in non-ribosomal peptides, in which peptidyl carrier protein (PCP)-tethering so far was shown crucial both in vivo and in vitro.  相似文献   

16.
Previously, our laboratory demonstrated that one cytochrome P450 isoenzyme can influence the catalytic properties of another P450 isoenzyme when combined in a reconstituted system. Moreover, our data and that of other investigators indicate that P450 interaction is required for catalytic activity even when one isoenzyme is present. The goal of the current study was to examine the possible mechanism of these interactions in more detail. Analyzing recently published X-ray data of microsomal P450 enzymes and protein docking studies, four types of dimer formations of P450 enzymes were examined in more detail. In case of two dimer types, the aggregating partner was shown to contribute to NADPH cytochrome P450 reductase (CPR) binding-a flavoprotein whose interaction with P450 is required for expressing P450 functional activity of the neighboring P450 moiety. Thus, it was shown that dimerization of P450 enzymes might result in an altered affinity towards the CPR. Two dimer types were shown to exist only in the presence of a substrate, while the other two types exist also without a substrate present. The molecular basis was established for the fact that the presence of a substrate and other P450 enzymes simultaneously determine the catalytic activity. Furthermore, a kinetic model was improved describing the catalytic activity of P450 enzymes as a function of CPR concentration based on equilibrium between different supramolecular organizations of P450 enzymes. This model was successfully applied in order to explain our experimental data and that of other investigators.Eszter Hazai and Zsolt Bikádi contributed equally to this workDavid Kupfer-Deceased  相似文献   

17.
A synthetic metalloporphine was immobilized onto a PVA-based and mercapto-grafted solid support, emulating the active site of cytochrome P450. Its ligninolytic peroxidase-like catalytic activity was studied. The coordinated mercapto ligand significantly affected the catalytic features of the catalyst because the oxidation of lignin-model compounds was very slow by comparison with imidazoleand pyridine-coordinated immobilized metalloporphines. Conversely, the catalyst efficiently bleached several industrial dyes and thus demonstrated promising activity for this application. Based on this altered substrate specificity the oxygen-donor catalytic route seems to be more favorable than a single electron oxidation pathway.  相似文献   

18.
药物代谢过程是药物在体内产生药效和毒性的主要过程,发展廉价、方便、快速、高通量的体外药物代谢研究方法对新药的开发和设计、给药的方法和剂量、临床药物的检测等都有重要的指导意义. 细胞色素P450酶(CYP450酶)在药物的I相反应中起到关键作用,以电极代替辅酶NADPH提供CYP450酶催化反应过程中需要的两个电子,构建CYP450酶电化学生物传感器可实现药物的初步筛选. 大量研究表明,CYP450酶在电极表面合适的固定方法与电极材料可有效提高传感器的检测性能. 本文主要综述近年来CYP450酶电化学生物传感器的构建及其在药物代谢研究方面的应用,并展望其研发前景.  相似文献   

19.
The interaction of small organic molecules such as drugs, agrochemicals, and cosmetics with cytochrome P450 enzymes (CYPs) can lead to substantial changes in the bioavailability of active substances and hence consequences with respect to pharmacological efficacy and toxicity. Therefore, efficient means of predicting the interactions of small organic molecules with CYPs are of high importance to a host of different industries. In this work, we present a new set of machine learning models for the classification of xenobiotics into substrates and non-substrates of nine human CYP isozymes: CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. The models are trained on an extended, high-quality collection of known substrates and non-substrates and have been subjected to thorough validation. Our results show that the models yield competitive performance and are favorable for the detection of CYP substrates. In particular, a new consensus model reached high performance, with Matthews correlation coefficients (MCCs) between 0.45 (CYP2C8) and 0.85 (CYP3A4), although at the cost of coverage. The best models presented in this work are accessible free of charge via the “CYPstrate” module of the New E-Resource for Drug Discovery (NERDD).  相似文献   

20.
Tri11 (now renamed as tri22) encoded cytochrome P450 monooxygenase in Trichoderma brevicompactum catalyzes the C-4 C-H hydroxylation of 12, 13-epoxytrichothec-9-ene (EPT) to produce trichodermol in the biosynthetic pathway of trichodermin/harzianum A. The density functional theory (DFT)-quantum mechanics (QM) approach is applied to elucidate the hydroxylation of EPT by using a model active species of P450 (Cpd I). The QM calculations were performed on the active site complex, to find out transition-state structure, intermediate, and product complexes for the two spin states at different potential energy surfaces. The two state reactivity rebound-free product formation resulted from the interplay of two spin states (doublet and quartet).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号