首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Four organotin complexes with 2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2dcbp: (Ph3n)2(dcbp) 1 , [(PhCH2)3n]2(dcbp) ⋅ 2CH3OH 2 , [(Me3Sn)2(dcbp)]n 3 , [(Bu3Sn)2(dcbp)]n 4 have been synthesized. The complexes 1–4 were characterized by elemental, IR, 1H, 13C, 119n NMR, and X‐ray crystallographic analyses. Crystal structures show that complex 1 is a monomer with one ligand coordinated to two triorganotin moieties, and a 1D infinite polymeric chain generates via intermolecular C H⋅⋅⋅N hydrogen bond; complex 2 is also a monomer and forms a 2D network by intermolecular O–H⋅⋅⋅O weak interaction; both of complexes 3 and 4 form 2D network structures where 2,2′‐bipyridine‐4,4′‐dicarboxylate acts as a tetradentate ligand coordinated to trimethyltin and tri‐n‐butyltin ions, respectively. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:19–28, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20506  相似文献   

2.
A new 2,2′‐bi‐1H‐benzimidazole bridging organic ligand, namely 1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole, C26H20N6, L or (I), has been synthesized and used to create three new one‐dimensional coordination polymers, viz.catena‐poly[[dichloridomercury(II)]‐μ‐1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole], [HgCl2(C26H20N6)]n, (II), and the bromido, [HgBr2(C26H20N6)]n, (III), and iodido, [HgI2(C26H20N6)]n, (IV), analogues. Free ligand L crystallizes with two symmetry‐independent half‐molecules in the asymmetric unit and each L molecule resides on a crytallographic inversion centre. In structures (II)–(IV), the L ligand is also positioned on a crystallographic inversion centre, whereas the Hg centre resides on a crystallographic twofold axis. Compound (I) adopts an anti conformation in the solid state and forms a two‐dimensional network in the crystallographic bc plane viaπ–π and C—H...π interactions. The three HgII coordination complexes, (II)–(IV), have one‐dimensional zigzag chains composed of L and HgX2 (X = Cl, Br and I), and the HgII centres are in a distorted tetrahedral [HgX2N2] coordination geometry. Complexes (III) and (IV) are isomorphous, whereas complex (II) displays an interesting conformational difference from the others, i.e. a twist in the flexible bridging ligand.  相似文献   

3.
Diorganotin(IV) dipyrazolinates of the type R2Sn(C15H12N2OX)2 [where C15H12N2OX = 3(2′‐Hydroxyphenyl)‐5(4‐X‐phenyl)pyrazoline {where X = H ( a ); CH3 ( b ); OCH3 ( c ); Cl ( d ) and R = Me, Prn and Ph}] have been synthesized by the reaction of R2SnCl2 with sodium salt of pyrazolines in 1:2 molar ratio, in anhydrous benzene. These newly synthesized derivatives have been characterized by elemental analysis (C, H, N, Cl and Sn), molecular weight measurement as well as spectral [IR and multinuclear NMR (1H, 13C and 119Sn)] studies. The bidentate behaviour of the pyrazoline ligands was confirmed by IR, 1H and 13C NMR spectral data. A distorted trans‐octahedral structure around tin(IV) atom for R2Sn(C15H12N2OX)2 has been suggested. The free pyrazoline and diorganotin(IV) dipyrazolinates have also been screened for their antibacterial and antifungal activities. Some diorganotin(IV) dipyrazolinates exhibit higher antibacterial and antifungal effect than free ligand and some of the antibiotics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Eight tri‐ and diorganotin(IV) carboxylates with general formulae R3SnL and R2SnL2 (where R = CH3, n‐C4H9, C6H5, C7H7, and L = 2′,4′‐difluoro‐4‐hydroxy‐[1,1′]‐biphenyl‐3‐carboxylic acid) were synthesized and characterized by UV–vis, IR, conductance, multinuclear (1H, 13C, and 119Sn) NMR spectroscopy, and mass spectrometry. The crystal structure of [(CH3)3Sn(C13H7O3F2)] indicates that the tin atom in the asymmetric unit exists in a trigonal bipyramidal geometry having a space group Pbca with an orthorhombic crystal system. These complexes were also screened for their antibacterial and antifungal activities. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:638–649, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10057  相似文献   

5.
Di‐ and triorganotin(IV) carboxylates, RnSn(OCOC(R2)=CHR1)4–n (n = 2 and 3; R = Me, Et, n‐Bu, Ph; R1 = 3‐CH3O‐4‐OHC6H3, R2 = C6H5) were prepared by reacting the corresponding organotin(IV) chloride with the silver salt of the (E)‐3‐(4‐hydroxy‐3‐methoxyphenyl)‐2‐phenylpropenoic acid. The title compounds were investigated and characterized by elemental analysis, infrared (FT‐IR), multinuclear (1H, 13C, 119Sn) NMR, and mass spectrometry, and possible structures were proposed. The complexes and ligand acid ( HL ) have been evaluated in vitro against various bacteria and fungi. The results noticed during the biocidal activity screenings proved their in vitro biological potential. They were also tested for cytotoxicity.  相似文献   

6.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Complexes [Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI )], where L is (E)‐3‐furanyl‐2‐phenyl‐2‐propenoate, have been synthesized and structurally characterized by vibrational and NMR (1H, 13C and 119Sn) spectroscopic techniques in combination with mass spectrometric and elemental analyses. The IR data indicate that in both the di‐ and triorganotin(IV) carboxylates the ligand moiety COO acts as a bidentate group in the solid state. The 119Sn NMR spectroscopic data, 1J[119Sn,13C] and 2J[119Sn, 1H], coupling constants show a four‐coordinated environment around the tin atom in triorganotin(IV) and five‐coordinated in diorganotin(IV) carboxylates in noncoordinating solvents. The complexes have been screened against bacteria, fungi, and brine‐shrimp larvae to assess their biological activity. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:612–620, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20488  相似文献   

8.
The reaction of N‐methyl‐2,2′‐diphenolamine 1 and 2,2′‐diphenolamine 2 with some diorganotin(IV) oxides [R1/2SnO: R1 = Me, n‐Bu, t‐Bu and Ph] led to the syntheses of diorgano[N‐methyl‐2,2′‐diphenolato‐O,O′,N]tin (IV) 3–6 and diorgano[2,2′‐diphenolato‐O,O′,N]tin (IV) 7–9 . All compounds (except 7 ) studied in this work were characterized by 1H, 13C, 119Sn NMR, infrared, and mass spectroscopy. Their 119Sn NMR data show that the tin atom is tetracoordinated in CDCl3 but penta and hexacoordinated in DMSO‐d6. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 133–139, 1999  相似文献   

9.
Three tin(IV) complexes of 2‐benzoylpyridine N(4)‐phenylthiosemicarbazone (H2Bz4Ph) were prepared: [Sn(L)Cl3] (1), [BuSn(L)Cl2] (2) and [(Bu)2Sn(L)Cl] (3), in which L stands for the anionic ligand formed upon complexation with deprotonation and release of HCl. The complexes were characterized by a number of spectroscopic techniques. The crystal structures of H2Bz4Ph and complex 3 were determined. The antifungal activity of the ligand and its tin(IV) complexes was tested against Candida albicans. The thiosemicarbazone proved to be more active than the tin(IV) complexes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The formation constants of the species formed in the systems H+ + dimethyltin(IV) + 5′‐IMP and 5′‐UMP, H+ + 5′‐IMP and H+ + 5′‐UMP have been determined in aqueous solution in the pH range 1.5–9.5 at constant temperature (25 °C) and constant ionic strength (0.1 mol dm−3 NaClO4), using spectrophotometric and potentiometric techniques. 1H and 31P NMR investigations in aqueous solution confirmed the species formation. The precipitated complexes of IMP and UMP by Me2Sn(IV)2+ at low pH values were characterized by elemental analysis and FTIR spectroscopy methods, the bonding sites of the ligands were determined and ruled out purine and pyrimidine moieties (N‐7 and N‐1 in IMP and N‐3 in UMP, respectively) while a bidentated coordination of the phosphate group is concluded in both cases. Finally, the experiments revealed the existence of complexes with trigonal bipyramidal structures that is in agreement with similar systems resulted previously. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The title compounds, dimethylammonium 2‐{4‐[1‐(4‐carboxymethoxyphenyl)‐1‐methylethyl]phenoxy}acetate, C2H8N+·C19H19O6, (I), and 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid–4,4′‐bipyridine (1/1), C19H20O6·C10H8N2, (II), are 1:1 adducts of 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid (H2L) with dimethylammonium or 4,4′‐bipyridine. The component ions in (I) are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into continuous two‐dimensional layers parallel to the (001) plane. Adjacent layers are stacked via C—H...O hydrogen bonds into a three‐dimensional network with an –ABAB– alternation of the two‐dimensional layers. In (II), two H2L molecules, one bipy molecule and two half bipy molecules are linked by O—H...N hydrogen bonds into one‐dimensional chains and rectanglar‐shaped rings. They are assembled viaπ–π stacking interactions and C—H...O hydrogen bonds into an intriguing zero‐dimensional plus one‐dimensional poly(pseudo)rotaxane motif.  相似文献   

12.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

13.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

14.
Two novel sulfonate phenol ligands—3,3′‐di‐tert‐butyl‐2′‐hydroxy‐5,5′,6,6′‐tetramethyl‐biphenyl‐2‐yl 4‐X‐benzenesulfonate (X?CF3, LCF3 ‐H, and X?OCH3, LOMe ‐H)—were prepared through the sulfonylation of 3,3′‐di‐tert‐butyl‐5,5′,6,6′‐tetramethylbiphenyl‐2,2′‐diol with the corresponding 4‐substituted benzenesulfonyl chloride (1 equiv.) in the presence of excess triethylamine. Magnesium (Mg) complexes supported by sulfonate phenoxide ligands were synthesized and characterized structurally. The reaction of MgnBu2 with L‐H (2 equiv.) produces the four‐coordinated monomeric complexes ( LCF3 )2Mg ( 1 ) and ( LOMe )2Mg ( 2 ). Complexes 1 and 2 are efficient catalysts for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) and trimethylene carbonate (TMC) in the presence of 9‐anthracenemethanol; complex 1 catalyzes the polymerization of ε‐CL and TMC in a controlled manner, yielding polymers with the expected molecular weights and narrow polydispersity indices (PDIs). In ε‐CL polymerization, the activity of complex 1 is greater than that of complex 2 , likely because of the greater Lewis acidity of Mg2+ metal caused by the electron‐withdrawing substitute trifluoromethyl (? CF3) at the 4‐position of the benzenesulfonate group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3564–3572, 2010  相似文献   

15.
The molecular structures of the two mononuclear title complexes, namely (4‐methoxybenzenethiolato‐κS)oxido[2,2′‐(3‐phenylpropylimino)bis(ethanethiolato)‐κ3S,N,S′]technetium(V), [Tc(C14H21NS2)(C7H7OS)O], (I), and (4‐methoxybenzenethiolato‐κS)oxido[2,2′‐(propylimino)bis(ethanethiolato)‐κ3S,N,S′]technetium(V), [Tc(C7H15NS2)(C7H7OS)O], (II), exhibit the same coordination environment for the central Tc atoms. The atoms are five‐coordinated (TcNOS3) with a square‐pyramidal geometry comprising a tridentate 2,2′‐(3‐phenylpropylimino)bis(ethanethiolate) or 2,2′‐(propylimino)bis(ethanethiolate) ligand, a 4‐methoxybenzenethiolate ligand and an additional oxide O atom. Intermolecular C—H...O and C—H...S hydrogen bonds between the monomeric units result in two‐dimensional layers with a parallel arrangement.  相似文献   

16.
In the title PbII coordination polymer, [Pb(C16H10O4)(C14H8N4)(C3H7NO)]n, each PbII atom is eight‐coordinated by two chelating N atoms from one pyrazino[2,3‐f][1,10]phenanthroline (L) ligand, one dimethylformamide (DMF) O atom and five carboxylate O atoms from three different 4,4′‐ethylenedibenzoate (eedb) ligands. The eedb dianions bridge neighbouring PbII centres through four typical Pb—O bonds and one longer Pb—O interaction to form a two‐dimensional structure. The C atoms from the L and eedb ligands form C—H...O hydrogen bonds with the O atoms of eedb and DMF ligands, which further stabilize the structure. The title compound is the first PbII coordination polymer incorporating the L ligand.  相似文献   

17.
Four triorganotin complexes of the types [(Ph3Sn)(C15H10FN4S)] ( 3 ), [(CH3)3Sn(C15H10FN4S)]n ( 4 ), [(Ph3Sn)(C13H9FN4S2)] ( 5 ), and [(CH3)3Sn(C13H9FN4S2)]n ( 6 ) have been obtained by Schiff base compound 1 (derived from 4‐fluorobenzaldehyde) and compound 2 (derived from thiophene‐2‐carboxadehyde) with triorganotin chloride in the presence of sodium ethoxide. All the complexes were characterized by elemental analysis, IR, and NMR spectroscopies, and X‐ray diffraction analyses, which revealed that complexes 3 and 5 are mononuclear structures, complex 4 and 6 are one‐dimensional zigzag infinite chains via N → Sn and S → Sn bonding interactions. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:583–591, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20481  相似文献   

18.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

19.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

20.
The reaction of 4,4′‐bipy with dimethyltin(IV) chloride iso‐thiocyanate affords the one‐dimensional (1D) coordination polymer, [Me2Sn(NCS)Cl·(4,4′‐bipy)]n ( 1 ), whereas reaction of dimethyltin(IV) dichloride with sodium pyrazine‐2‐carboxylate in the presence of potassium iso‐thiocyanate affords the two‐dimensional (2D) coordination polymer, {[Me2Sn(C4H3N2COO)2]2 [Me2Sn(NCS)2]}n ( 2 ). Both coordination polymers were characterized by elemental analysis and infrared spectroscopy in addition to 1H and 13C NMR spectroscopy of the soluble coordination polymer ( 1 ). A single‐crystal structure determination showed that the asymmetric unit in 1 contains Me2Sn(NCS)Cl and 4,4′‐bipy moieties and a 1D infinite rigid chain structure forms through bridging of the 4,4′‐bipy ligand between tin atoms and the geometry around the tin atom is a distorted octahedral. Coordination polymer 2 contains two distinct tin atom geometrics in which one tin atom is seven coordinate, and the other is six coordinate. The two tin atom environments are best described as a pentagonal bipyramidal in the former and distorted octahedral in the latter where the carboxylate groups bridge the two tin atoms and construct a 2D‐coordination polymer. The 119Sn NMR spectroscopy indicates the octahedral geometry of 1 retains in solution. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:699–706, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/.20736  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号