首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diarylvinylidenecyclopropanes undergo a novel rearrangement in the presence of the Brønsted acid Tf2NH (Tf: trifluoromethanesulfonyl) to give the corresponding naphthalene derivatives in good to high yields upon heating, whereas in the presence of the Brønsted acid toluene‐4‐sulfonic acid (p‐TSA), the corresponding triene derivatives are afforded in moderate to good yields under mild conditions. Corresponding mechanistic studies on the basis of density functional theory (DFT) with the Gaussian03 program by using the B3LYP method have revealed that the pKa value of the Brønsted acid, as well as the entropy and solvent effects, plays a significant role in this reaction; these factors can discriminate the differences in the reactivity and regioselectivity among the Brønsted acids used in this reaction. In the presence of Lewis acid Sn(OTf)2, a butatrienecyclopane can produce the corresponding ring‐opened products in moderate yields.  相似文献   

2.
In this research, a novel organic–inorganic hybrid salt, namely, N1,N1,N2,N2‐tetramethyl‐N1,N2‐bis(sulfo)ethane‐1,2‐diaminium tetrachloroferrate ([TMBSED][FeCl4]2) was prepared and characterized by Fourier‐transform infrared spectroscopy (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), elemental mapping, field emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), thermal gravimetric (TG), differential thermal gravimetric (DTG), and vibrating‐sample magnetometry (VSM) analyses. Catalytic activity of the hybrid salt was tested for the synthesis of N,N′‐alkylidene bisamides through the reaction of benzamide (2 eq.) and aromatic aldehydes (1 eq.) under solvent‐free conditions in which the products were obtained in high yields and short reaction times. The catalyst was superior to many of the reported catalysts in terms of two or more of these factors: the reaction medium and temperature, yield, time, and turnover frequency (TOF). [TMBSED][FeCl4]2 is a Brønsted–Lewis acidic catalyst; there are two SO3H groups (as Brønsted acidic sites) and two tetrachloroferrate anions (as Lewis acidic sites) in its structure. Highly effectiveness of the catalyst for the synthesis of N,N′‐alkylidene bisamides can be attributed to synergy of the Brønsted and Lewis acids and also possessing two sites of each acid.  相似文献   

3.
A cooperative catalytic system established by the combination of an iron salt and a chiral Brønsted acid has proven to be effective in the asymmetric Friedel–Crafts alkylation of indoles with β‐aryl α′‐hydroxy enones. Good to excellent yields and enatioselectivities were observed for a variety of α′‐hydroxy enones and indoles, particularly for the β‐aryl α′‐hydroxy enones bearing an electron‐withdrawing group at the para position of the phenyl ring (up to 90 % yield and 91 % ee). The proton of the chiral Brønsted acid, the Lewis acid activation site, as well as the inherent basic site for the hydrogen‐bonding interaction of the Brønsted acid are responsible for the high catalytic activities and enantioselectivities of the title reaction. A possible reaction mechanism was proposed. The key catalytic species in the catalytic system, the phosphate salt of FeIII, which was thought to be responsible for the high activity and good enantioselectivity, was then confirmed by ESIMS studies.  相似文献   

4.
Phosphorus‐modified all‐silica zeolites exhibit activity and selectivity in certain Brønsted acid catalyzed reactions for biomass conversion. In an effort to achieve similar performance with catalysts having well‐defined sites, we report the incorporation of Brønsted acidity to metal–organic frameworks with the UiO‐66 topology, achieved by attaching phosphonic acid to the 1,4‐benzenedicarboxylate ligand and using it to form UiO‐66‐PO3H2 by post‐synthesis modification. Characterization reveals that UiO‐66‐PO3H2 retains stability similar to UiO‐66, and exhibits weak Brønsted acidity, as demonstrated by titrations, alcohol dehydration, and dehydra‐decyclization of 2‐methyltetrahydrofuran (2‐MTHF). For the later reaction, the reported catalyst exhibits site‐time yields and selectivity approaching that of phosphoric acid on all‐silica zeolites. Using solid‐state NMR and deprotonation energy calculations, the chemical environments of P and the corresponding acidities are determined.  相似文献   

5.
Brønsted acid‐mediated annulation of internal olefins α‐oxo ketene dithioacetals to pyrroles was efficiently achieved to afford cyclopenta[b]pyrroles. A pair of Brønsted acids with acid strengths, that is, trifluoroacetic acid, and para‐toluenesulfonic acid hydrate, were applied to promote the annulation reactions. The resultant products were readily oxidized to sulfones by meta‐chloroperoxybenzoic acid. Subsequent treatment with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene gave desulfurized terminal olefins or [2+2] cycloaddition products from the desulfurized olefin intermediates. The present protocol provides facile access to structurally diverse cyclopenta[b]pyrrole derivatives under mild conditions.  相似文献   

6.
Chiral N,N′‐dioxide/Zn(NTf2)2 complexes were demonstrated to be highly effective in the direct asymmetric conjugate addition of arylacetonitriles to alkylidene malonates under mild conditions. A wide range of substrates were tolerated to afford their corresponding products in moderate‐to‐good yields with high diastereoselectivities (82:18–>99:1 d.r.) and enantioselectivities (81–99 % ee). The reactions performed well, owing to the high Lewis acidity of the metal triflimidate and a ligand‐acceleration effect. The N,N′‐dioxide also benefited the deprotonation process as a Brønsted base. The catalytic reaction could be performed on the gram‐scale with retention of yield, diastereoselectivity, and enantioselectivity. The products that contained functional groups were ready for further manipulation. In addition, a possible catalytic model was proposed to explain the origin of the asymmetric induction.  相似文献   

7.
An anti‐selective Mannich reaction of aldehydes with N‐sulfonyl imines has been developed by using a 4‐hydroxypyrrolidine in combination with an external Brønsted acid. The catalyst design is based on three elements: the α‐substituent of the pyrrolidine, the 4‐hydroxy group, and the Brønsted acid, the combination of which is essential for high chemical and stereochemical efficiency. The reaction works with aromatic aldehyde‐derived imines, which have rarely been employed in previously reported enamine‐based anti‐Mannich reactions. Additionally, both N‐tosyl and N‐nosyl imines can be successfully used and the Mannich adducts can be easily reduced or oxidized, and after N‐deprotection the corresponding β‐amino acids and β‐amino alcohols can be obtained with good yields. The results also show that this ternary catalytic system may be practical in other enamine‐based reactions.  相似文献   

8.
A new ammonium‐type zwitterion (ZI), N,N‐dihexyl‐N‐monopentyl‐3‐sulfonyl‐1‐propaneammonium (N665C3S) with adequate hydrophobicity showed reversible and highly temperature‐sensitive lower critical solution temperature (LCST)‐type phase transitions after being mixed with pure water. Generally for such compounds, those with longer alkyl chains were immiscible with water and those with shorter chains were miscible with water, regardless of temperature. A slightly more hydrophobic ZI than N665C3S showed LCST‐type phase behavior with water when it was mixed with equimolar amounts of a Brønsted acid such as trifluoromethanesulfonic acid (HTfO). The phase‐transition temperature of the ZI/Brønsted acid mixed aqueous solution was controllable by water content.  相似文献   

9.
The mechanism of Lewis acid catalysed hetero‐Michael addition reactions of weakly basic nucleophiles to α,β‐unsaturated ketones was investigated. Protons, rather than metal ions, were identified as the active catalysts. Other mechanisms have been ruled out by analyses of side products and of stoichiometric enone–catalyst mixtures and by the use of radical inhibitors. No evidence for the involvement of π‐olefin–metal complexes or for carbonyl–metal‐ion interactions was obtained. The reactions did not proceed in the presence of the non‐coordinating base 2,6‐di‐tert‐butylpyridine. An excellent correlation of catalytic activities with cation hydrolysis constants was obtained. Different reactivities of mono‐ and dicarbonyl substrates have been rationalised. A 1H NMR probe for the assessment of proton generation was established and Lewis acids have been classified according to their propensity to hydrolyse in organic solvents. Brønsted acid‐catalysed conjugate addition reactions of nitrogen, oxygen, sulfur and carbon nucleophiles are developed and implications for asymmetric Lewis acid catalysis are discussed.  相似文献   

10.
《中国化学》2017,35(10):1529-1539
A series of mesoporous Nb and Nb‐W oxides were employed as highly active solid acid catalysts for the conversion of glucose to 5‐hydroxymethylfurfural (HMF ). The results of solid state 31P MAS NMR spectroscopy with adsorbed trimethylphosphine as probe molecule show that the addition of W in niobium oxide increases the number of Brønsted acid sites and decreases the number of Lewis acid sites. The catalytic performance for Nb‐W oxides varied with the ratio of Brønsted to Lewis acid sites and high glucose conversion was observed over Nb5W5 and Nb7W3 oxides with high ratios of Brønsted to Lewis acid sites. All Nb‐W oxides show a relatively high selectivity of HMF , whereas no HMF forms over sulfuric acid due to its pure Brønsted acidity. The results indicate fast isomerization of glucose to fructose over Lewis acid sites followed by dehydration of fructose to HMF over Brønsted acid sites. Moreover, comparing to the reaction occurred in aqueous media, the 2‐butanol/H2O system enhances the HMF selectivity and stabilizes the activity of the catalysts which gives the highest HMF selectivity of 52% over Nb7W3 oxide. The 2‐butanol/H2O catalytic system can also be employed in conversion of sucrose, achieving HMF selectivity of 46% over Nb5W5 oxide.  相似文献   

11.
Novel magnesium fluorides have been prepared by a new fluorolytic sol–gel synthesis for fluoride materials based on aqueous HF. By changing the amount of water at constant stoichiometric amount of HF, it is possible to tune the surface acidity of the resulting partly hydroxylated magnesium fluorides. These materials possess medium‐strength Lewis acid sites and, by increasing the amount of water, Brønsted acid sites as well. Magnesium hydroxyl groups normally have a basic nature and only with this new synthetic route is it possible to create Brønsted acidic magnesium hydroxyl groups. XRD, MAS NMR, TEM, thermal analysis, and elemental analysis have been applied to study the structure, composition, and thermal behaviour of the bulk materials. XPS measurements, FTIR with probe molecules, and the determination of N2/Ar adsorption–desorption isotherms have been carried out to investigate the surface properties. Furthermore, activity data have indicated that the tuning of the acidic properties makes these materials versatile catalysts for different classes of reactions, such as the synthesis of (all‐rac)‐[α]‐tocopherol through the condensation of 2,3,6‐trimethylhydroquinone (TMHQ) with isophytol (IP).  相似文献   

12.
Tetratrifylpropene (TTP) has been developed as a highly acidic, allylic C–H acid for Brønsted and Lewis acid catalysis. It can readily be obtained in two steps and consistently shows exceptional catalytic activities for Mukaiyama aldol, Hosomi–Sakurai, and Friedel–Crafts acylation reactions. X‐ray analyses of TTP and its salts confirm its designed, allylic structure, in which the negative charge is delocalized over four triflyl groups. NMR experiments, acidity measurements, and theoretical investigations provide further insights to rationalize the remarkable reactivity of TTP.  相似文献   

13.
A biodegradable functionalized ionic liquid 3‐(N,N‐dimethyldodecylammonium)propanesulfonic acid hydrogen sulfate ([DDPA][HSO4]) was prepared and used as a Brønsted acid–surfactant‐combined catalyst for the eco‐friendly one‐pot synthesis of 1,8‐dioxo‐octahydroxanthenes at 100°C in water. Under these conditions, the reaction of various aromatic aldehydes with dimedone generated 1,8‐dioxo‐octahydroxanthenes in good yields with a simple postreaction procedure. The products could simply be separated from the catalyst/water system, and the catalyst could be reused at least six times without noticeably decreasing the catalytic activity. J. Heterocyclic Chem., (2011).  相似文献   

14.
A trio catalyst system, composed of arylamine, BINOL‐derived phosphoric acid, and Y(OTf)3, enables the combination of enamine catalysis with both hard metal Lewis acid catalysis and Brønsted acid catalysis for the first time. Using this catalyst system, a three‐component aza‐Diels–Alder reaction of substituted cinnamaldehyde, cyclic ketone, and arylamine is carried out with high chemo‐ and enantioselectivity, affording a series of optically active 1,4‐dihydropyridine (DHP) derivatives are obtained in 91–99 % ee and 59–84 % yield. DHPs bearing a chiral quaternary carbon center are also obtained with good enantioselectivity and moderate yield (three examples). Preliminary mechanistic investigations have also been conducted.  相似文献   

15.
We describe herein a catalytic, enantioselective process for the synthesis of 4H‐chromenes which are important structural elements of many natural products and biologically active compounds. A sequence comprising a conjugate addition of β‐diketones to in situ generated ortho‐quinone methides followed by a cyclodehydration reaction furnished 4‐aryl‐4H‐chromenes in generally excellent yields and high optical purity. A BINOL‐based chiral phosphoric acid was employed as a Brønsted acid catalyst which converted ortho‐hydroxy benzhydryl alcohols into hydrogen‐bonded ortho‐quinone methides and effected the carbon–carbon bond‐forming event with high enantioselectivity.  相似文献   

16.
We report a direct catalytic asymmetric Mannich‐type addition of α,β‐unsaturated γ‐butyrolactam to α‐ethoxycarbonyl ketimines promoted by a soft Lewis acid/Brønsted base cooperative catalyst. A thiophosphinoyl group on the nitrogen of ketimines was crucial for both electrophilic activation and α‐addition of γ‐butyrolactams. The obtained aza‐Morita–Baylis–Hillman‐type products bear an α‐amino acid architecture with a tetra‐substituted stereogenic center.  相似文献   

17.
The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3) on vanadium‐based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time‐resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta–titania (V2O5‐WO3‐TiO2), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono‐oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3. We were also able to verify the formation of the nitrosamide (NH2NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance.  相似文献   

18.
The reaction of indoles and stabilized cyclopropyl alkynes under gold‐ and/or gold & Brønsted acid‐catalysis provided access to highly substituted tetrahydrocarbazoles. A mechanistic study revealed the complex mechanism underlying these processes and the opportunistic cooperation of Lewis and Brønsted acid‐catalysts towards the formation of complex molecular scaffolds.  相似文献   

19.
A metal–organic framework Al‐MIL‐53‐NH2‐derived Brønsted acid catalyst (Al‐MIL‐53‐RSO3H) has been synthesized employing a post‐synthetic modification strategy under mild conditions. The Al‐MIL‐53‐RSO3H catalyst was successfully utilized in the nitro‐Mannich reaction taking advantage of its strong Brønsted acidity. Good to excellent yields of Mannich adducts were achieved for a variety of acylimine substrates in the presence of 0.1 mol% Al‐MIL‐53‐RSO3H. Furthermore, the Al‐MIL‐53‐RSO3H catalyst can be recycled five times without decreasing the yield and selectivity of Mannich adducts.  相似文献   

20.
A convergent and highly stereoselective [4+2] cycloaddition of in situ‐generated ortho‐Quinone methides (o‐QMs) and azlactone enols has been successfully developed through a triple Brønsted acid catalysis strategy. This protocol provides an efficient and mild access to various densely functionalized dihydrocoumarins bearing adjacent quaternary and tertiary stereogenic centers in high yields with excellent diastereo‐ and enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号