首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A novel analytical method is presented for the determination of chlorophenols in water. This method involves pre-concentration by solid-phase microextraction (SPME) and an external desorption using a micellar medium as desorbing agent. Final analysis of the selected chlorophenols compounds was carried out by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Optimum conditions for desorption, using the non-ionic surfactant polyoxyethylene 10 lauryl ether (POLE), such as surfactant concentration and time were studied. A satisfactory reproducibility for the extraction of target compounds, between 6 and 15%, was obtained, and detection limits were in the range of 1.1-5.9ngmL(-1). The developed method is evaluated and compared with the conventional one using organic solvent as a desorbing agent. The method was successfully applied to the determination of chlorophenols in water samples from different origin. This study has demonstrated that solid-phase microextraction with micellar desorption (SPME-MD) can be used as an alternative to conventional SPME method for the extraction of chlorophenols in water samples.  相似文献   

2.
A sensitive and useful method based on solid-phase microextraction with micellar desorption (SPME-MD) coupled to HPLC with fluorescence detection was developed for the determination of five fluoroquinolones (levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, and sarafloxacin) in environmental water matrices. The SPME extraction efficiency was optimized with regard to time, temperature, pH, and ionic strength using a CW-TPR fiber. A detailed study about the optimum conditions for micellar desorption (surfactant type, concentration, and desorption time) were made. Among different surfactants studied, Polyoxyethylene 10 lauryl ether showed the best responses to extract fluoroquinolones using SPME-MD. Relative standard deviations of the developed method were below 9%. Limits of detection and quantification were between 0.01–0.2 and 0.03–0.6 ng mL−1, respectively. The recoveries achieved for all five compounds were in the 81–116% range. The proposed method was compared using conventional desorbing agent as methanol. Finally, the SPME-MD methodology was applied to the determination of these target analytes in several environmental liquid samples, including seawater, groundwater, and wastewater samples with excellent results.  相似文献   

3.
A new methodology based on the microwave assisted micellar extraction (MAME) technique has been optimised, using soil samples, to extract and determine a mixture of the eight organophosphorous pesticides mainly used in agriculture. The pesticides under study have been extracted using the non-ionic surfactants polyoxyethylene 10 lauryl ether (POLE) and oligoethylene glycol monoalkyl ether (Genapol X-080). The optimal extraction variables, such as surfactant concentration, pH, radiation time and microwave power were determined for each surfactant. The results show the advantage of using POLE instead of Genapol X-080 for the extraction of the organophosphorus pesticides with recoveries higher than 70% for most of the compounds and relative standard deviations (RSD) below 2.6%. This method was successfully applied to fresh samples as well as to aged samples for the analysis of soils with different characteristics and compared with the traditional Soxhlet technique.  相似文献   

4.
Main inborn errors of metabolism diagnosable through uracil (Ura) analysis and the therapeutic monitoring of toxic 5‐fluorouracil (5FU) in dihydro pyrimidine dehydrogenase (DPD) deficient patients require a sensitive, reproducible, selective and accurate method. In this work, an artificial receptor in the format of molecularly imprinted polymer (MIP) brush ‘grafted to’ the surface of sol–gel immobilized on cost‐effective homemade solid‐phase microextraction (SPME) fibers, individually imprinted with either of Ura and 5FU, was used in combination with a voltammetric sensor duly modified with the same MIP. This combination provided up to 10‐ and 8.4‐fold preconcentrations of Ura and 5FU, respectively, which was more than sufficient for achieving stringent detection limits in the primitive diagnosis of uracil disorders and fluoropyrimidine toxicity in DPD‐deficient patients. The proposed method permits the assessment of Ura and 5FU plasma concentrations with detection limits pf 0.0245 and 0.0484 ng mL?1 (RSD = 1.0–2.5%, S/N = 3), respectively, without any problems of non‐specific false‐positives and cross‐reactivities in complicated matrices of biological samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Microwave-assisted micellar extraction methodology was applied to extract a mixture of 8 organophosphorus pesticides from the cuticle of tomato samples prior to analysis by liquid chromatography with ultraviolet detection. This technique provided very good results and was simple, fast, and environmentally friendly. The pesticides under study were extracted using the nonionic surfactants polyoxyethylene 10 lauryl ether (POLE) and oligoethylene glycol monoalkyl ether (Genapol X-080). The optimal extraction variables to be applied were determined for each surfactant and then compared. POLE proved to be the most suitable for the extraction, with recoveries over 70% in the majority and relative standard deviation values under 4.8%. After validation using a tomato sample enriched with a certified mixture, the proposed method was applied to the analysis of organophosphorus pesticides in lettuce and pepper samples.  相似文献   

6.
A two‐phase electromembrane extraction (EME) was developed and directly coupled with gas chromatography mass spectrometry (GC‐MS) analysis. The proposed method was successfully applied to the simultaneous determination of imipramine, desipramine, citalopram and sertraline. The model compounds were extracted from neutral aqueous sample solutions into the organic phase filled in the lumen of the hollow fiber. This method was accomplished with 1‐heptanol as organic phase, by means of 60 V applied voltage and with the extraction time of 15 min. Experiments reported recoveries in the range of 69–87% from 1.2 mL neutral sample solution. The compounds were quantified by GC‐MS instrument, with acceptable linearity ranging from 1 to 500 ng mL?1 (R2 in the range of 0.989 to 0.998), and repeatability (RSD) ranging between 7.5 and 11.5% (n = 5). The estimated detection limits (S/N ratio of 3:1) were less than 0.25 ng mL?1. This novel approach based on two‐phase EME brought advantages such as simplicity, low‐costing, low detection limit and fast extraction with a total analysis time less than 25 min. These experimental findings were highly interesting and demonstrated the possibility of solving ionic species in the organic phase at the presence of electrical potential.  相似文献   

7.
The interaction between anionic surfactants (AS) and 1‐hexadecyl‐3‐methylimidazolium bromide [C16mim]Br was studied by using resonance light scattering (RLS) technique, UV‐Vis spectrophotometry and fluorometric methods. In Britton Robinson (BR) buffer (pH 6.0), [C16mim]Br reacted with AS to form supermolecular complex which resulted in enhancement in RLS intensity. Their maximum RLS wavelengths were all at 390 nm. Some important interacting experimental variables, such as the solution acidity, [C16mim]Br concentration, salt effect and addition order of the reagents, were investigated and optimized. Under the optimum conditions, quantitative determination ranges were 0.001–7 μg·mL?1 for dodecyl sodium sulfate (SDS), 0.001–6 μg·mL?1 for sodium dodecylbenzene sulfonate (SDBS) and 0.005–7 μg·mL?1 for sodium lauryl sulfonate (SLS), respectively, while the detection limits were 1.3 ng·mL?1 for SDS, 1.0 ng·mL?1 for SDBS and 5.1 ng·mL?1 for SLS, respectively. Based on the ion‐association reaction, a highly sensitive, simple and rapid method has been established for the determination of AS.  相似文献   

8.
Although nonionic micellar electrokinetic chromatography is used for the separation of charged compounds that are not easily separated by capillary zone electrophoresis, the effect of the hydrophilic moiety of the nonionic surfactant has not been studied well. In this study, the separation of ultraviolet‐absorbing amino acids was studied in electrokinetic chromatography using neutral polyoxyethylene lauryl ether surfactants (Adekatol) in the separation solution. The effect of the polyethylene moiety (the number of repeating units was from 6.5 to 50) of the hydrophobic test amino acids (methionine, tryptophan, and tysorine) was studied using a 10 cm effective length capillary. The separation mechanism was based on hydrophobic as well as hydrogen bonding interactions at the micellar surface, which was made of the polyoxyethylene moiety. The length of the polyoxyethylene moiety of the surfactants was not important in nonionic micellar electrokinetic chromatography mode.  相似文献   

9.
Electrochemically co‐deposited sol–gel/Cu nanocomposites have been introduced as a novel, simple and single‐step technique for preparation of solid‐phase microextraction (SPME) coating to extract methadone (MDN) (a synthetic opioid) in urine samples. The porous surface structure of the sol–gel/Cu nanocomposite coating was revealed by scanning electron microscopy. Direct immersion SPME followed by HPLC‐UV determination was employed. The factors influencing the SPME procedure, such as the salt content, desorption solvent type, pH and equilibration time, were optimized. The best conditions were obtained with no salt content, acetonitrile as desorption solvent type, pH 9 and 10 min equilibration time. The calibration graphs for urine samples showed good linearity. The detection limit was about 0.2 ng mL−1. Also, the novel method for preparation of nanocomposite fiber was compared with previously reported techniques for MDN determination. The results show that the novel nanocomposite fiber has relatively high extraction efficiency.  相似文献   

10.
A modified Rheodyne 7520 microsample injector was used as a new solid phase microextraction (SPME)–liquid chromatography (LC) interface. The modification was focused on the construction of a new sample rotor, which was built by gluing two sample rotors together. The new sample rotor was further reinforced with 3 pieces of stainless steel tubing. The enlarged central flow passage in the new sample rotor was used as a desorption chamber. SPME fiber desorption occurred in static mode. But all desorption solvent in the desorption chamber was injected into LC system with the interface. The analytical performance of the interface was evaluated by SPME–LC analysis of PAHs in water. At least 90% polycyclic aromatic hydrocarbons (PAHs) were desorbed from a polyacrylonitrile (PAN)/C18 bonded fuse silica fiber in 30 s. And injection was completed in 20 s. About 10–20% total carryovers were found on the fiber and in the interface. The carryover in the interface was eliminated by flushing the desorption chamber with acetonitrile at 1 mL min−1 for 2 min. The repeatability of the method was from 2% to 8%. The limit of detection (LOD) was in the mid pg mL−1 range. The linear ranges were from 0.1 to 100 ng mL−1. The new SPME–LC interface was reliable for coupling SPME with LC for both qualitative and quantitative analysis.  相似文献   

11.
Solid phase microextraction (SPME) then capillary gas chromatography with mass spectrometric detection have been used for determination of nine phenyl compounds in snow water in Beijing City. Headspace extraction with a fiber coated with 100 µm PDMS was used to extract the compounds. Extraction and desorption times were optimized at 8 and 2 min, respectively. Relative standard deviation (RSD) of the analytical method was found to be less than 5%. The linear range was wide and limits of detection were less than 5 ng mL−1 for the nine target analytes. Several phenyl compounds at ng mL−1 levels were detected in snow samples in Beijing, indicating the corresponding air pollution.  相似文献   

12.
Natalia Campillo 《Talanta》2010,80(5):1856-1861
A method based on solid-phase microextraction (SPME) followed by gas chromatography with microwave-induced plasma atomic emission detection for determining dimethylselenide (DMSe) and dimethyldiselenide (DMDSe) in milk and milk by-products is proposed. Parameters affecting the SPME, such as sample volume or mass, ionic strength, adsorption and desorption times and temperatures were optimized in the headspace mode. The matrix effect was evaluated for the different samples studied, concluding that standard additions calibration was required for quantification purposes. The detection limits ranged from 70 to 110 pg mL−1 for DMSe and from 80 to 400 pg mL−1 for DMDSe, depending on the sample under analysis. None of the twenty-three samples analyzed contained the studied compounds at concentrations above the corresponding detection limits.  相似文献   

13.
The use of two automated sample preparation techniques, solid-phase microextraction (SPME) and purge and trap (P&T) systems are critically compared for the GC–MS determination of eight volatile organic compounds (VOCs), including trihalomethanes (THMs), in drinking water samples. Compounds chosen for the comparison are regulated by Spanish and European official guidelines for drinking waters. Experimental parameters investigated for the two sample preparation techniques included SPME type of fibers, SPME modality, P&T gas flow, extraction and desorption times and desorption temperatures. Thus, optimal experimental conditions have been worked out for the SPME and P&T techniques. Under such optimised conditions, detection limits, precision and accuracy were evaluated. Both methods fulfilled the values that the official guidelines establish. The P&T–GC–MS method offers LDs ranged from 0.004 to 0.2 ng mL−1, repeatabilities below 6% and recoveries between 81 and 117%; while LDs ranging from 0.008 to 0.7 ng mL−1, 1–12% R.S.D. and recoveries from 80 to 119% were achieved with the SPME–GC–MS method. Finally, we chose P&T–GC–MS method as the best for this determination and we validate this methodology by its application to the analysis of an Aquacheck Interlaboratory Exercise.  相似文献   

14.
A piece of fused-silica fibre coated with silica modified with ketamine-groups was used as a solidphase microextraction (SPME) fibre and its efficiency in the qualitative and quantitative analysis of volatile organic compounds released from coloured overprinting on DVDs was evaluated. The effect of the parameters that can affect the SPME procedure, such as extraction time, extraction temperature, desorption temperature, was investigated to determine the analytical performance of this novel fibre in the qualitative and quantitative analyses of organic compounds. The optimised procedure was applied to the qualitative and quantitative analyses of organic compounds released from coloured overprinting on DVDs. The limit of detection of 4-methoxyphenol (mequinol) was 88 × 10−3 μg mL−1, while the limit of quantification (LOQ) was calculated as ten times the baseline noise, i.e. 3.1 × 10−1 μg mL−1. The proposed fibre was used successfully for preconcentration of the volatile organic compounds from the gaseous phase of DVD samples.  相似文献   

15.
A new in-loop solid-phase microextraction coupled with high performance liquid chromatography was developed for a fast and easy on line extraction, pre-concentration and LC analysis of moderately polar compounds from non-polar solvents. The inner surface of a long and small bore aluminum tube was electrochemically coated by Al2O3 and used as a new in-tube SPME device which can be also replaced to the injection loop in LC to achieve automated in-loop SPME-LC analysis. Large volume of n-hexane containing trace amounts of phenol and biphenyl was passed through the loop. The analytes were then desorbed by a small volume of methanol and introduced into chromatographic column. This technique was successfully used to analyses of different groups of moderately polar compounds. In this work, phenol and biphenyl were selected as the model compounds. Effect of various parameters affecting in-loop solid-phase microextraction and chromatographic procedure were investigated. Under the optimum conditions the calibration graph were linear in the range of 10–1000 ng mL?1 and 50–1500 ng mL?1 the detection limits were 2.5 and 8 ng mL?1 for phenol and biphenyl, respectively. The relative standard deviations (RSDs) were < 2.4 and < 4.9% for phenol and biphenyl respectively. Concentration factor obtained for these compounds were more than 100 folds. The prepared SPME capillary tube (loop) is sturdy, inexpensive, and durable, and can be easily coupled with LC.  相似文献   

16.
A micellar liquid chromatographic method was developed for the green enantioseparation of racemic amino alcohols using an aqueous solution of the mixed surfactants as an alternative for organic solvents. In this study, the derivatives of the amino alcohols were synthesized using highly reactive chiral esters of (S)-levofloxacin (Lfx) under microwave conditions, and an aqueous solution of the surfactants (Brij-35 and SDS) was used for the enantioseparation of the synthesized diastereomeric derivatives (DDs) of amino alcohols using reversed-phase HPLC. The activated ester of Lfx was synthesized by reacting with N-hydroxybenzotriazole and characterized using UV, IR, 1H NMR, high-resolution mass spectrometry, and elemental analysis. The DDs of racemic amino alcohols were separated on a C18 column using micellar LC. Chromatographic conditions were optimized by varying the concentration of the surfactants in aqueous solution and by varying the concentration and pH of the buffer. The green assessment score was calculated for the developed method (score: 82, an excellent green method). In addition, the density functional theory calculations were performed to develop the lowest energy-optimized structures of DDs. The method was validated according to the International Conference of Harmonization guidelines, and the retention factor (k), selectivity factor (α), resolution factor (RS), limit of detection (0.198 ng mL−1 or 0.291 pM mL−1), and limit of quantification (0.594 ng mL−1 or 0.873 pM mL−1) were calculated.  相似文献   

17.
Simple, sensitive, and reproducible off-line solid-phase microextraction and liquid chromatography (SPME/LC) methods are described for the determination of seven anticonvulsants and tricyclic antidepressants in human plasma. Factorial design and simplex methodology were applied in the optimization of the SPME procedure for tricyclic antidepressants analyses. Important factors in the SPME efficiency are discussed, such as the fiber coatings (both lab-made and commercial), extraction time, pH, ionic strength, influence of plasma proteins, and desorption conditions. The development of the lab-made fiber coatings, namely, octadecylsilane, aminosilane, and polyurethane, are further described and applied to anticonvulsants analyses. The investigated plasmatic range for the evaluated anticonvulsants, using CW-TPR fiber, were the following: phenylethylmalonamide (3.00–40.0 μg mL−1), phenobarbital (5.00–40.0 μg mL−1), primidone (3.00–40.0 μg mL−1), carbamazepine and carbamazepine-epoxide (2.00–24.0 μg mL−1), phenytoin (2.00–40.0 μg mL−1), and lamotrigine (0.50–12.0 μg mL−1). The antidepressants’ linear plasmatic concentration ranged from 75.0 to 500 ng mL−1 for imipramine, amitriptyline, and desipramine, and from 50.0 to 500 ng mL−1 for nortriptyline, being in all cases, the limit of quantification represented by the lowest value. The precision (interassays) for all investigated drugs in plasma sample spiked with different concentrations of each analyte and submitted to the described procedures were lower than 15%. The off-line SPME/LC methodologies developed allow anticonvulsants and antidepressants analyses from therapeutic to toxic levels for therapeutic drug monitoring.  相似文献   

18.
A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes (MWCNTs)/Nafion was developed and applied for the extraction of polar aromatic compounds (PACs) in natural water samples. The characteristics and the application of this fiber were investigated. Electron microscope photographs indicated that the MWCNTs/Nafion coating with average thickness of 12.5 μm was homogeneous and porous. The MWCNTs/Nafion coated fiber exhibited higher extraction efficiency towards polar aromatic compounds compared to an 85 μm commercial PA fiber. SPME experimental conditions, such as fiber coating, extraction time, stirring rate, desorption temperature and desorption time, were optimized in order to improve the extraction efficiency. The calibration curves were linear from 0.01 to 10 μg mL−1 for five PACs studied except p-nitroaniline (from 0.005 to 10 μg mL−1) and m-cresol (from 0.001 to 10 μg mL−1), and detection limits were within the range of 0.03–0.57 ng mL−1. Single fiber and fiber-to-fiber reproducibility were less than 7.5 (n = 7) and 10.0% (n = 5), respectively. The recovery of the PACs spiked in natural water samples at 1 μg mL−1 ranged from 83.3 to 106.0%.  相似文献   

19.
Polyoxyethylene(23)lauryl ether (known as Brij‐35) is a nonionic surfactant, which has been considered as an alternative to the extensively used in micellar liquid chromatography anionic surfactant sodium lauryl (dodecyl) sulfate, for the analysis of drugs and other types of compounds. Brij‐35 is the most suitable nonionic surfactant for micellar liquid chromatography, owing to its commercial availability, low cost, low toxicity, high cloud temperature, and low background absorbance. However, it has had minor use. In this work, we gather and discuss some results obtained in our laboratory with several β‐blockers, sulfonamides, and flavonoids, concerning the use of Brij‐35 as mobile phase modifier in the isocratic and gradient modes. The chromatographic performance for purely micellar eluents (with only surfactant) and hybrid eluents (with surfactant and acetonitrile) is compared. Brij‐35 increases the polarity of the alkyl‐bonded stationary phase and its polyoxyethylene chain with the hydroxyl end group allows hydrogen‐bond interactions, especially for phenolic compounds. This offers the possibility of using aqueous solutions of Brij‐35 as mobile phases with sufficiently short retention times. The use of gradients of acetonitrile to keep the concentration of Brij‐35 constant is another interesting strategy that yields a significant reduction in the peak widths, which guarantee high resolution.  相似文献   

20.
Summary Solid-phase microextraction (SPME) is a solvent-free sample-preparation technique that enables isolation and pre-concentration of analytes from a sample on a thin film coating a fused-silica fiber. In this study SPME coupled with microcolumn liquid chromatography (micro LC) has been used for the determination of four tricyclic antidepressants (amitriptyline, imipramine, nortriptyline, and desipramine) in human urine. SPME conditions which affect extraction efficiency were optimized, and under the optimum conditions the system was a few hundred times more sensitive than direct LC analysis without SPME. For amitriptyline the detection limit was 3 ng mL−1 and the calibration curve was linear in the range of 5–500 ng mL−1. The SPME-micro LC method has been applied to the analysis of amitriptyline in patient’s urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号