首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fooling enzymes with mock amides : Analogues of apicidin, a cyclic‐tetrapeptide inhibitor of histone deacetylase (HDAC), were designed with a 1,4‐ or 1,5‐disubstituted 1,2,3‐triazole in place of a backbone amide bond to fix the bond in question in either a trans‐like or a cis‐like configuration. Thus, the binding affinity of distinct peptide conformations (see picture) could be probed. One analogue proved in some cases to be superior to apicidin as an HDAC inhibitor.

  相似文献   


2.
3.
The biological activity of midkine, a cytokine implicated in neuro‐ and tumourigenesis, is regulated by its binding to glycosaminoglycans (GAGs), such as heparin and chondroitin sulfate (CS). To better understand the molecular recognition of GAG sequences by this growth factor, the interactions between synthetic chondroitin sulfate‐like tetrasaccharides and midkine were studied by using different techniques. Firstly, a synthetic approach for the preparation of CS‐like oligosaccharides in the sequence GalNAc–GlcA was developed. A fluorescence polarisation competition assay was then employed to analyse the relative binding affinities of the synthetic compounds and revealed that midkine interacted with CS‐like tetrasaccharides in the micromolar range. The 3D structure of these tetramers was studied in detail by a combination of NMR spectroscopy experiments and molecular dynamics simulations. Saturation transfer difference (STD) NMR spectroscopy experiments indicate that the CS tetrasaccharides bind to midkine in an extended conformation, with similar saturation effects along the entire sugar chain. These results are compatible with docking studies that suggest an interaction of the tetrasaccharide with midkine in a folded structure. Overall, this study provides valuable information on the interaction between midkine and well‐defined, chemically synthesised CS oligosaccharides and these data can be useful for the design of more active compounds that modulate the biological function of this protein.  相似文献   

4.
α‐Conotoxins are disulfide‐rich peptides that target nicotinic acetylcholine receptors. Recently we identified several α‐conotoxins that also modulate voltage‐gated calcium channels by acting as G protein‐coupled GABAB receptor (GABABR) agonists. These α‐conotoxins are promising drug leads for the treatment of chronic pain. To elucidate the diversity of α‐conotoxins that act through this mechanism, we synthesized and characterized a set of peptides with homology to α‐conotoxins known to inhibit high voltage‐activated calcium channels via GABABR activation. Remarkably, all disulfide isomers of the active α‐conotoxins Pu1.2 and Pn1.2, and the previously studied Vc1.1 showed similar levels of biological activity. Structure determination by NMR spectroscopy helped us identify a simplified biologically active eight residue peptide motif containing a single disulfide bond that is an excellent lead molecule for developing a new generation of analgesic peptide drugs.  相似文献   

5.
Polytheonamide B ( 1 ) is a natural peptide that displays potent cytotoxicity against P388 mouse leukemia cells (IC50=0.098 nm ). Linear 48‐mer 1 is known to form monovalent cation channels on binding to lipid bilayers. We previously developed a fully synthetic route to 1 , and then achieved the design and synthesis of a structurally simplified analogue of 1 , namely, dansylated polytheonamide mimic 2 . Although the synthetically more accessible 2 was found to emulate the channel function of 1 , its cytotoxicity was decreased 120‐fold. Herein, the chemical preparation and biological evaluation of seven analogues 3 – 9 of 2 are reported. Compounds 3 – 9 were modified at their N terminus and/or the side chain of residue 44 of 2 to alter their physicochemical properties. The total synthesis of 3 – 9 was accomplished in a unified fashion by a combination of solid‐phase and solution‐phase chemistry. Systematic evaluation of the hydrophobicities, single‐channel currents, ion‐exchange activities, and cytotoxicities of 3 – 9 revealed that their hydrophobicities are correlated with the total magnitude of ion exchange and determine their cytotoxic potency. Consequently, the most hydrophobic analogue 9 exhibited the lowest IC50 value, which is comparable to that of 1 . Therefore, these results clarified that the bioactivity of the polytheonamide‐based peptides can be rationally controlled by changing their hydrophobicity at the N and C termini of the 48‐amino‐acid sequence.  相似文献   

6.
Clinically applied proteasome inhibitors induce cell death by concomitant blockage of constitutive and immunoproteasomes. In contrast, selective immunoproteasome inhibition is less cytotoxic and has the potential to modulate chronic inflammation and autoimmune diseases. In this study, we rationally designed decarboxylated peptides that covalently target a non‐catalytic cysteine of the immunoproteasome subunit β5i with α‐chloroacetamide‐containing sidechains. The enhanced isoform specificity decreased cytotoxic effects and the compound suppressed the production of inflammatory cytokines. Structure‐based optimization led to over 150‐fold selectivity for subunit β5i over β5c. This new compound class provides a promising starting point for the development of selective immunoproteasome inhibitors as potential anti‐inflammatory agents.  相似文献   

7.
Two novel methyl‐substituted arachidonic acid derivatives were prepared in an enantioselective manner from commercially available chiral building blocks, and were found to be excellent templates for the development of (13S)‐methyl‐substituted anandamide analogues. One of the compounds synthesized, namely, (13S,5Z,8Z,11Z,14Z)‐13‐methyl‐eicosa‐5,8,11,14‐tetraenoic acid N‐(2‐hydroxyethyl)amide, is an endocannabinoid analogue with remarkably high affinity for the CB1 cannabinoid receptor.  相似文献   

8.
The synthesis of a series of 4‐aryl‐3,5‐bis(arylethynyl)aryl‐4H‐1,2,4‐triazoles derivatives is reported and the influence exerted by peripheral substitution on the morphology of the aggregates generated from these 1,2,4‐triazoles is investigated by SEM imaging. The presence of paraffinic side chains results in long fibrillar supramolecular structures, but unsubstituted triazoles self‐assemble into thinner ribbons and needle‐like aggregates. The crystals obtained from methoxy‐substituted triazoles have been utilised to elaborate a model that helps to justify aggregation of the investigated 1,2,4‐triazoles, in which the operation of arrays of C?H???π non‐covalent interactions plays a significant role. The results presented herein demonstrate the ability of simple molecules to behave as multitasking scaffolds with different properties, depending on peripheral substitution. Thus, although 1,2,4‐triazoles without long paraffinic side chains exhibit optical waveguiding behaviour, triazoles endowed with peripheral paraffinic side chains exhibit hexagonal columnar mesomorphism.  相似文献   

9.
A novel molecular design strategy is provided to rationally tune the stimuli response of luminescent materials with aggregation‐induced emission (AIE) characteristics. A series of new AIE‐active molecules (AIE rotors) are prepared by covalently linking different numbers of tetraphenylethene moieties together. Upon gradually increasing the number of rotatable phenyl rings, the sensitivity of the response of the AIE rotors to viscosity and temperature is significantly enhanced. Although the molecular size is further enlarged, the performance is only slightly improved due to slightly increased effective rotors, but with largely increased rotational barriers. Such molecular engineering and experimental results offer more in‐depth insight into the AIE mechanism, namely, restriction of intramolecular rotations. Notably, through this rational design, the AIE rotor with the largest molecular size turns out to be the most viscosensitive luminogen with a viscosity factor of up to 0.98.  相似文献   

10.
The human lectin galectin‐1 (hGal‐1) translates sugar signals, that is, β‐galactosides, into effects on the level of cells, for example, growth regulation, and has become a model for studying binding of biopharmaceutically relevant derivatives. Bound‐state conformations of Galβ‐C‐(1→3)‐Glcβ‐OMe ( 1 ) and its βGal‐(1→3)‐βGlc‐OMe disaccharide parent compound were studied by using NMR spectroscopy (transferred (TR)‐NOESY data), assisted by docking experiments and molecular dynamics (MD) simulations. The molecular recognition process involves a conformational selection event. Although free C‐glycoside access four distinct conformers in solution, hGal‐1 recognizes shape of a local minimum of compound 1 , the synΦ/synΨ conformer, not the structure at global minimum. MD simulations were run to explain, in structural terms, the observed geometry of the complex.  相似文献   

11.
12.
13.
The solid‐phase combinatorial synthesis of cyclodepsipeptide destruxin E has been demonstrated. The combinatorial synthesis of cyclization precursors 8 was achieved by using a split and pool method on SynPhase Lanterns. The products were successfully macrolactonized in parallel in the solution phase by using 2‐methyl‐6‐nitrobenzoic anhydride and 4‐(dimethylamino)pyridine N‐oxide to afford macrolactones 9 , and the subsequent formation of an epoxide in the side chain gave 18 member destruxin E analogues 6 . Biological evaluation of analogues 6 indicated that the N‐MeAla residue was crucial to the induction of morphological changes in osteoclast‐like multinuclear cells (OCLs). Based on structure–activity relationships, azido‐containing analogues 15 were then designed for use as a molecular probe. The synthesis and biological evaluation of analogues 15 revealed that 15 b , in which the Ile residue was replaced with a Lys(N3) residue, induced morphological changes in OCLs at a sufficient concentration, and modification around the Ile residue would be tolerated for attachment of a chemical tag toward the target identification of destruxin E ( 1 ).  相似文献   

14.
15.
Two approaches for the solid‐phase total synthesis of apratoxin A and its derivatives were accomplished. In synthetic route A, the peptide was prepared by the sequential coupling of the corresponding amino acids on trityl chloride SynPhase Lanterns. After cleavage from the polymer‐support, macrolactamization of 10 , followed by thiazoline formation, provided apratoxin A. This approach, however, resulted in low yield because the chemoselectivity was not sufficient for the formation of the thiazoline ring though its analogue 33 was obtained. However, in synthetic route B, a cyclization precursor was prepared by solid‐phase peptide synthesis by using amino acids 13 – 15 and 18 . The final macrolactamization was performed in solution to provide apratoxin A in high overall yield. This method was then successfully applied to the synthesis of apratoxin analogues. The cytotoxic activity of the synthetic derivatives was then evaluated. The epimer 34 was as potent as apratoxin A, and O‐methyl tyrosine can be replaced by 7‐azidoheptyl tyrosine without loss of activity. The 1,3‐dipolar cycloaddition of 38 with phenylacetylene was performed in the presence of a copper catalyst without affecting the thiazoline ring.  相似文献   

16.
The design of disulfide bond mimetics is an important strategy for optimising cysteine‐rich peptides in drug development. Mimetics of the drug lead conotoxin MrIA, in which one disulfide bond is selectively replaced of by a 1,4‐disubstituted‐1,2,3‐triazole bridge, are described. Sequential copper‐catalyzed azide–alkyne cycloaddition (CuAAC; click reaction) followed by disulfide formation resulted in the regioselective syntheses of triazole–disulfide hybrid MrIA analogues. Mimetics with a triazole replacing the Cys4–Cys13 disulfide bond retained tertiary structure and full in vitro and in vivo activity as norepinephrine reuptake inhibitors. Importantly, these mimetics are resistant to reduction in the presence of glutathione, thus resulting in improved plasma stability and increased suitability for drug development.  相似文献   

17.
18.
De novo drug discovery is still a challenge in the search for potent and selective modulators of therapeutically relevant target proteins. Here, we disclose the unexpected discovery of a peptidic ligand 1 by X‐ray crystallography, which was auto‐tailored by the therapeutic target MMP‐13 through partial self‐degradation and subsequent structure‐based optimization to a highly potent and selective β‐sheet peptidomimetic inhibitor derived from the endogenous tissue inhibitors of metalloproteinases (TIMPs). The incorporation of non‐proteinogenic amino acids in combination with a cyclization strategy proved to be key for the de novo design of TIMP peptidomimetics. The optimized cyclic peptide 4 (ZHAWOC7726) is membrane permeable with an IC50 of 21 nm for MMP‐13 and an attractive selectivity profile with respect to a polypharmacology approach including the anticancer targets MMP‐2 (IC50: 170 nm ) and MMP‐9 (IC50: 140 nm ).  相似文献   

19.
The difluoromethylene (CF2) group has a strong tendency to adopt corner over edge locations in aliphatic macrocycles. In this study, the CF2 group has been introduced into musk relevant macrocyclic ketones. Nine civetone and five muscone analogues have been prepared by synthesis for structure and odour comparisons. X‐ray studies indeed show that the CF2 groups influence ring structure and they give some insight into the preferred ring conformations, triggering a musk odour as determined in a professional perfumery environment. The historical conformational model of Bersuker and co‐workers for musk fragrance generally holds, and structures that become distorted from this consensus, by the particular placement of the CF2 groups, lose their musk fragrance and become less pleasant.  相似文献   

20.
The reaction of 2‐chloro‐4,6‐dimethoxy‐1,3,5‐triazine (CDMT) with various nitrogen‐containing compounds, particularly tertiary amines (tert‐amines), has been studied for the preparation of 2‐(4,6‐dimethoxy‐1,3,5‐triazinyl)trialkylammonium salts [DMT‐Am(s)]. DMT‐Ams derived from aliphatic tert‐amines exhibited activity for the dehydrocondensation between a carboxylic acid and an amine to form an amide in a model reaction. Based on a conformational analysis of DMT‐Ams and tert‐amines by NMR and X‐ray diffraction methods, we concluded that a β‐alkyl group maintained in a gauche relationship with the nitrogen lone pair of tert‐amines significantly hinders the approach of CDMT to the nitrogen. Thus, trimethylamine and quinuclidine without such alkyl groups readily react with CDMT whereas triethylamine, possessing two or three such gauche β‐alkyl groups in the stable conformations, does not react at all. The theory of “gauche β‐alkyl group effect” proposed here provides useful guidelines for the preparation of DMT‐Ams possessing various tertiary amine moieties. An investigation of the dehydrocondensation activity of tert‐amines in a CDMT/tert‐amine system that involves in situ generation of DMT‐Am, showed that the gauche effect of the β‐alkyl group becomes quite pronounced; the yield of the amide decreases significantly with tert‐amines possessing an unavoidable gauche β‐alkyl group. Thus, the tert‐amine/CDMT systems are useful for judging whether tert‐amines can readily react with CDMT without isolation of DMT‐Ams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号