首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A combination of fluorescence spectroscopy, thermogravimetric analysis, and molecular mechanics calculations has been used to study the structure-directing effect of the aromatic benzylpyrrolidine (BP) molecule (and its monofluorinated derivatives), and (S)-(-)-N-benzylpyrrolidine-2-methanol (BPM) in the synthesis of the microporous AFI structure. The results clearly show that, while all molecules form supramolecular aggregates in concentrated water solution, BPM molecules have a much more pronounced trend to aggregate as dimers within the AFI structure due to the development of interdimer H-bond interactions. Instead, BP (and its ortho- and meta-fluorinated derivatives) SDAs tend to incorporate in the AFI structure as monomers but with the simultaneous occlusion of water molecules, while para-fluorinated BP derivatives do not form compact dimers able to be accommodated in the AFI structure. We propose a crystallization mechanism where the presence of dimers is required for the nucleation step to occur, while crystal growth takes place through the simultaneous occlusion of SDA monomers and water (when the synthesis is performed with BP and derivatives) or through the occlusion of SDA dimers (in the synthesis with BPM).  相似文献   

2.
Using a combination of computer modeling techniques, we have investigated the ability of benzylpyrrolidine and its fluorinated derivatives in ortho, meta, and para positions of the phenyl ring to direct the synthesis of the aluminophosphate AlPO-5. The o- and p-fluoro derivatives are not good templates because of the poor packing of the template molecules inside the AlPO-5 pores, due to a repulsion provoked by the fluorine atoms. However, benzylpyrrolidine and the m-fluoro derivative do direct the synthesis of AlPO-5, the latter being a better template due to higher electrostatic interactions with the framework. We demonstrate that, at least when the synthesis is performed with an excess of template molecules, the ability of organic templating molecules to direct the synthesis of microporous materials depends not on the host-guest interaction energy per unit of template molecules, as usually calculated, but on the density of interaction energy, i.e., the energy per formula unit of the microporous network. The packing density of molecules inside the channel system must be taken properly into account. From the calculated location of the benzylpyrrolidine molecules and their m-fluoro derivative inside the inorganic network, we would expect the formation of stable dimers.  相似文献   

3.
Molecular mechanics computational methods have been employed to study the structure directing effect of S-(-)-1-benzyl-2-pyrrolidiniummethanol molecules towards microporous aluminophosphate materials with the AFI structure. These chiral molecules form dimers inside the one-dimensional AFI channel, which are the active structure-directing agents in the synthesis. Four different conformers of the S-(-)-1-benzyl-2-pyrrolidiniummethanol molecule are in principle available; of these, the S,S-trans shows a marked stability in dimeric form. Self-assembly between adjacent dimers generates a helicoidal, and hence chiral arrangement of the organic molecules, which extends with the same direction of rotation through the whole solid, and may thus be employed to introduce chirality in the microporous material.  相似文献   

4.
(1S,2S)-N-methyl-pseudoephedrine (MPS) was used as organic structure-directing agent (OSDA) for the synthesis of Mg-doped nanoporous aluminophosphates. This molecule displays a particular conformational behavior, where the presence of H-bond donor and acceptor groups provide a rigid conformational space with one asymmetric conformation preferentially occurring. MPS drives the crystallization of Mg-containing AFI materials. Characterization of these materials shows that the OSDA incorporate as protonated species, arranged as head-to-tail monomers. Combination of three-dimensional electron diffraction with high-resolution synchrotron powder X-ray diffraction allowed to locate both the Mg and the organic species. Interestingly, results showed that the spatial incorporation of Mg is driven by the hydroxyl groups of the organic cation through the development of H-bonds with negatively-charged MgO4 tetrahedra. This work demonstrates that H-bond forming groups can be used to drive the spatial incorporation of low-valent dopants within zeolitic frameworks, a highly desired aim in order to control their catalytic activity and selectivity.  相似文献   

5.
采用决策树方法对微孔磷酸铝的合成反应数据库进行了数据挖掘研究, 结果表明, 有机胺模板剂的属性对特定孔道的生成起着至关重要的作用. 进一步分析得到合成十二元环AlPO4-5微孔磷酸铝的约束条件, 并从理论上预测出用于合成十二元环AlPO4-5微孔磷酸铝的一系列新的有机胺模板剂. 部分理论分析结果得到了分子力学计算的有力支持, 并被合成实验所验证.  相似文献   

6.
Through a “one-pot” strategy, a layer of microporous organic polymer was coated onto the surface of monodisperse amino-functionalized silica microsphere via amino-aldehyde condensation reaction with core-shell structure. The change in chemical structure of material before and after modification was determined by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Due to existence of a large number of amino and aldehyde groups in microporous organic polymer shell, the water contact angle decreased from 56.8° (silica microspheres) to 34.7° (microporous organic polymer-coated silica microspheres). Based on these properties, microporous organic polymer-coated silica microspheres were employed as the stationary phase for capillary liquid chromatography and successfully offered baseline separation of polar small molecules. Additionally, the material could also be served as the sorbent of hydrophilic interaction chromatography to enrich glycopeptides from human serum digest. A total of 470 unique N-glycopeptides and 342 N-glycosylation sites mapped to 112 N-glycosylated proteins were unambiguously identified from 2 μL of human serum, exhibiting a promising application prospect of microporous organic polymer-coated silica microspheres in the pretreatment of proteomics samples.  相似文献   

7.
We describe the synthesis of AlPO-5 and SAPO-5 materials (AFI topology) using five different tertiary amines or quaternary ammonium ions containing one or two benzyl rings as structure-directing agents (SDAs). All of the molecules successfully direct the crystallization of AlPO-5; however, only the most efficient templates are able to crystallize SAPO-5. The observed differences in template efficiency can be rationalized in terms of the interaction energy between these molecules and the AFI framework. In ranking the template molecules, we notice that a well-defined molecular shape enhances the templating ability, but molecules that are too rigid are not able to adapt to the AlPO framework, yielding an inferior templating ability. Results of atomic-level modeling show that templates with one benzyl ring self-assemble in the main AFI channel by forming dimers with the benzyl rings parallel to each other; templates with two benzyl rings assemble instead into longer chains in which the benzyl ring of one molecule faces the ring of the subsequent one. Both mono- and dibenzyl templates show a high space-filling ability in AFI. Kinetic and thermodynamic factors that might affect the structure-directing activity of the molecules are examined.  相似文献   

8.
The X‐ray crystallographic studies are reported for a water‐soluble sodium complex of organic acid, {[Na(NSNDC)(H2O)2]·H2O}n, (NSNDC = 7‐Nitro‐5‐sulfonate‐napthalene‐1,4‐dicarboxy‐acid). It contains layers of vertically oriented NNSDC‐anions sandwiching cations and water molecules. The rows of anions are linked in a direction by sodium ions and along b by hydrogen bonding, which have microporous channels (9.410 × 3.210Å2) along the crystallographic b‐axis. Considering the Na coordination environments, π‐π stacking interaction between aryl ring and hydrogen bonds, the title compound represents a stably 2D infinitely extended structure.  相似文献   

9.
用分子动力学方法,研究了有机胺模板剂对二维层孔与三维微孔磷酸铝化合物的模板作用。依据主-客体间的非键相互作用能量,可以有效地预测出适于某一特定结构的有机胺模板剂。通过选择理论预测的有机胺分子作模板剂,在溶剂热体系中可以定向地合成出具有特定结构的化合物。这一工作对于微孔功能体系的分子工程学研究具有一定的指导意义。  相似文献   

10.
The development of inorganic frameworks with extra‐large pores (larger than 12‐membered rings) has attracted considerable attention because of their potential applications in catalysis, the separation of large molecules, and so forth. We herein report the synthesis of the new extra‐large‐pore zeolite NUD‐2 by using the supramolecular self‐assembly of simple aromatic organic cations as structure‐directing agents (SDAs). NUD‐2 is a high‐silicon‐content germanosilicate with interconnecting 14×10‐membered‐ring channels. The SDAs in NUD‐2 can be removed by calcination in air at 550 °C to yield permanent pores with a BET surface area of 500 m2g?1. Both germanium and organic cations in NUD‐2 can also be removed by treatment with acid at lower temperature, thus not only affording recycling of germanium and SDAs, but also providing a highly stable siliceous zeolite. In addition, aluminum ions can be incorporated into the framework of NUD‐2. The NUD‐2 structure is yet another extra‐large‐pore zeolite synthesized by using the supramolecular self‐assembling templating approach, thus demonstrating that this approach is a general and applicable strategy for synthesis of new large‐ and extra‐large‐pore zeolites.  相似文献   

11.
Novel isomorphous pillared‐layer‐type crystalline lanthanide 1,3,5‐benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP‐bpy and LnBP‐dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X‐ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP‐dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials.  相似文献   

12.
TheSynthesesof1┐Dimensional(1┐D)Chain,2┐DLayered,and3┐DMicroporousAlumino┐phosphateswithOccludedAmineorAmmoniumTemplatesfromA...  相似文献   

13.
Zeolites are crystalline microporous materials with application in diverse fields, especially in catalysis. The ability to prepare zeolites with targeted physicochemical properties for a specific catalytic application is a matter of great interest, because it allows the efficiency of the entire chemical process to be increased (higher product yields, lower undesired by‐products, less energy consumption, and cost savings, etc). Nevertheless, directing the zeolite crystallization towards the material with the desired framework topology, crystal size, or chemical composition is not an easy task, since several variables influence the nucleation and crystallization processes. The combination of accumulated knowledge, rationalization, and innovation has allowed the synthesis of unique zeolitic structures in the last few years. This is especially true in terms of the design of organic and inorganic structure‐directing agents (SDAs). In this Minireview we will present the rationale we have followed in our studies to synthesize new zeolite structures, while putting this in perspective with the advances made by other researchers of the zeolite community.  相似文献   

14.
Gate‐opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate‐opening that is induced by gas adsorption, the pore‐opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas‐selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas‐induced gate‐opening process of a microporous metal–organic framework, [Mn(ina)2] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X‐ray diffraction, in situ powder X‐ray diffraction coupled with differential scanning calorimetry (XRD‐DSC), and gas adsorption–desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction.  相似文献   

15.
Porous coordination polymers constructed from Zn2+ and isophthalate with linear bipyridyl‐type ligands were synthesized. [Zn(ip)(bpb)]n (CID‐21; ip=isophthalate, bpb=1,4‐bis(4‐pyridyl)benzene), [Zn(ip)(bpt)]n (CID‐22; bpt=3,6‐bis(4‐pyridyl)‐1,2,4,5‐tetrazine), and [Zn(ip)(bpa)]n (CID‐23; bpa=1,4‐bis(4‐pyridyl)acetylene) all have interdigitated structures of layers and similar void volumes (≈27 %). In these compounds, 1D bottleneck‐type channels run along the perpendicular direction of the layer stacking and their properties are strongly dominated by the dipyridyl linker ligands. Because of the difference in packing of 2D layers, CID‐21 and CID‐22 have relatively rigid porous structures, whereas CID‐23 has greater flexibility, as indicated by the results of powder X‐ray diffraction studies. The micropores of CID‐22 surrounded by tetrazine moieties adsorb polar molecules, such as methanol and water. The higher affinity of CID‐22 for water than CID‐21 is supported by a theoretical study. The 1D channel of CID‐23 is wider than that of the other two compounds, which enables the incorporation of aromatic molecules. This is because the shape of the bpa linker ligand generates a wider pore diameter (8.6 Å). Only CID‐23 can adsorb a benzene molecule and the isotherm of benzene has a gate‐opening‐type profile. This offers proof of the guest accommodation process through large structural transformation from a nonporous to a porous structure. The flexibility and restricted pore space of CID‐23, at 298 K, allows only benzene, but not cyclohexane, to enter the channels. The porous structure exhibits clear selectivity for these similar guests. The incorporation of an elongated dipyridyl linker ligand in the 2D coordination layers provides a strategy for the design of microporous compounds with different flexibilities, microporous environments, and separation abilities.  相似文献   

16.
《化学:亚洲杂志》2017,12(20):2711-2719
Three hierarchical porous zeolites (H‐*BEA, H‐MTW, and H‐*MRE) were successfully synthesized with the assistance of designed cationic surfactants under hydrothermal synthesis conditions. The as‐synthesized zeolite samples can be easily regulated by changing the number of long hydrophobic n ‐alkyl chains. Also, we investigated the relationship between the length of the surfactant and the formation of the microporous structure of the zeolite. Furthermore, the alkylation of benzene with propene was performed as a probe reaction to evaluate the catalytic performance of the synthesized hierarchical zeolites. The resulting materials were characterized by using a complementary combination of techniques, that is, X‐ray powder diffraction, N2 adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, 28Si and 27Al MAS NMR spectroscopies, thermogravimetric analysis, and computer simulation. These analysis results indicated that quaternary ammonium surfactants acted as organic structure‐directing agents (OSDAs) in the formation of these hierarchical zeolite samples, whether the surfactant had long hydrophobic tail groups or not. The simulation results indicated that the organic molecules with no long hydrophobic chain could lead to the synthesis of zeolite through charge control, and the hydrophobic molecules with long hydrophobic chains could form zeolites through orbital control. These hierarchical zeolites showed improved catalytic activity towards the industrially relevant alkylation of benzene with propene compared with conventional zeolites with the same frameworks. More importantly, the success of using quaternary ammonium surfactants with no hydrophobic n ‐alkyl tail group in the synthesis of hierarchically structured mesoporous zeolites provides a new pathway for the synthesis of hierarchical porous materials by a soft‐templating method.  相似文献   

17.
Amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were synthesized by ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and 2,2‐bis(azidomethyl)trimethylene carbonate (ADTC) with poly(ethylene glycol) monomethyl ether (mPEG) as an initiator, followed by the click reaction of propargyl palmitate and the pendant azido groups on the polymer chains. Stable micelle solutions of the amphiphilic block‐graft copolymers could be prepared by adding water to a THF solution of the polymer followed by the removal of the organic solvent by dialysis. Dynamic light scattering measurements showed that the micelles had a narrow size distribution. Transmission electron microscopy images displayed that the micelles were in spherical shape. The grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug‐loading capacity and entrapment efficiency. Further, the amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were low cytotoxic and had more sustained drug release behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Dipeptides with two hydrophobic side chains have proved to be an exceptional source of microporous organic materials, but since previous structures were limited to the incorporation of only proteinogenic residues, their full potential as adsorbents has remained unexplored. Single‐crystal XRD data for ten new compounds with non‐proteinogenic L ‐2‐aminobutanoic acid and/or L ‐2‐amino‐pentanoic acid are presented. The gas‐phase accessibility of their crystal pores, with cross‐sections of 2.3 to 5.1 Å, was monitored by CO2 and CH4 adsorption isotherms. Included CO2 was also detected spectroscopically by 2D MAS NMR. An extensive conformational analysis reveals that the use of linear rather than branched side chains (such as L ‐valine and L ‐isoleucine) affords peptides with a greater degree of conformational freedom and yields more‐flexible channel surfaces that may easily adapt to a series of potential guest molecules.  相似文献   

19.
Two tricyclic capped six-rings (C6R), a double four-ring (D4R), and an Al(μ-F)2Al unit are among the structural features of 1 (see picture for structure) that are closely related to motifs found in layered and three-dimensional alumino- and gallophosphates. Several reactive centers can render 1 a viable precursor for the synthesis of microporous aluminophosphates.  相似文献   

20.
We present a new metal–organic framework (MOF) built from lanthanum and pyrazine‐2,5‐dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)1.5(H2O)2] ? 2 H2O, is microporous, with 1D channels that easily accommodate water molecules. Its framework is highly robust to dehydration/hydration cycles. Unusually for a MOF, it also features a high hydrothermal stability. This makes it an ideal candidate for air drying as well as for separating water/alcohol mixtures. The ability of the activated MOF to adsorb water selectively was evaluated by means of thermogravimetric analysis, powder and single‐crystal X‐ray diffraction and adsorption studies, indicating a maximum uptake of 1.2 mmol g?1 MOF. These results are in agreement with the microporous structure, which permits only water molecules to enter the channels (alcohols, including methanol, are simply too large). Transient breakthrough simulations using water/methanol mixtures confirm that such mixtures can be separated cleanly using this new MOF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号