首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
A concise preparation of the enantiopure 1,2‐(isopropylidenedioxy)‐3,4‐epoxy‐5‐cyclohexene 2b , which is an important building block for (+)‐pinitol synthesis, evolved by combining the asymmetric cycloaddition of isopropylidenedioxy)cyclohexadiene to chiral chloronitroso with an internal substitution of an amino alcohol to create vinyl epoxide.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Thioether 4‐[(1′E,3′E)‐4′‐phenylsulfanyl‐1,3′‐butadienyl]pyridine 8 and sulfone 4‐(4′‐phenylsulfonyl‐1′,3′‐butadienyl)pyridine 14 were prepared by reaction of the carbanions derived from allylic thioether or allylic sulfone with isonicotinaldehyde. The reaction with the sulfonyl carbanion occurred at the α position and on heating the alcolate gave the dienic sulfone 14 . The corresponding pyridinium iodide 10 and 15 were prepared by reaction with methyl iodide, respectively, on pyridine derivates 8 and 14 . The dienic pyridinium thioether 10 showed a long wavelength absorption band centered at 420 nm. The reaction of dienic pyridinium sulfone 15 with thiophenol gave the dienic pyridinium thioether 10 by a nucleophilic vinylic substitution. The reaction of sulfone 15 with glutathione was of second order and the rate constant was 8.5 M?1s?1 at 30°C and pH 7, about 500 times smaller than the rate constant observed with (E)‐1‐methyl‐4‐(2‐methylsulfonyl‐1‐ethenyl)pyridinium iodide 1 . The dienic pyridinium thioether 10 was a negative solvatochrome.  相似文献   

13.
14.
Directing group assisted ortho‐C?H activation has been known for the last few decades. In contrast, extending the same approach to achieve activation of the distal meta‐ and para‐C?H bonds in aromatic molecules remained elusive for a long time. The main challenge is the conception of a macrocyclic transition state, which is needed to anchor the metal catalyst close to the target bond. Judicious modification of the chain length, the tether linkage, and the nature of the catalyst‐coordinating donor atom has led to a number of successful studies in the last few years. This Review compiles the significant achievements made in this field of both meta‐ and para‐selectivity using covalently attached directing groups, which are systematically classified on the basis of their mode of covalent attachment to the substrate as well as their chemical nature. This Review aims to create a more heuristic approach for recognizing the suitability of the directing groups for use in future organic transformations.  相似文献   

15.
A novel synthetic method for the preparation of 5‐aryl‐7‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)‐2‐phenylpyrazolo[1,5‐c]‐pyrimidines and 1‐(5‐aryl‐2‐phenylpyrazolo[1,5‐c]pyrimidin‐7‐yl)‐3‐methyl‐1H‐pyrazol‐5‐ols is provided by condensative cyclization of 5‐aryl‐7‐hydrazino‐2‐phenylpyrazolo[1,5‐c]pyrimidines with 1,3‐dicarbonyl compounds. The study of the more reactive position for electrophilic substitusion reactions on such ring system was also achieved.  相似文献   

16.
Although there are ways to synthesize ortho‐pentafluoro‐λ6‐sulfanyl (SF5) pyridines, meta‐ and para‐SF5‐substituted pyridines are rare. We disclose herein a general route for their synthesis. The fundamental synthetic approach is the same as reported methods for ortho‐SF5‐substituted pyridines and SF5‐substituted arenes, that is, oxidative chlorotetrafluorination of the corresponding disulfides to give pyridylsulfur chlorotetrafluorides (SF4Cl‐pyridines), followed by chloride/fluoride exchange with fluorides. However, the trick in this case is the presence on the pyridine ring of at least one fluorine atom, which is essential for the successful transformation of the disulfides into m‐and p‐SF5‐pyridines. After enabling the synthesis of an SF5‐substituted pyridine, ortho‐F groups can be efficiently substituted by C, N, S, and O nucleophiles through an SNAr pathway. This methodology provides access to a variety of previously unavailable SF5‐substituted pyridine building blocks.  相似文献   

17.
18.
Cyclohexylamine reacts with 5‐chloro‐3‐methyl‐1‐(pyridin‐2‐yl)‐1H‐pyrazole‐4‐carbaldehyde to give 5‐cyclohexylamino‐3‐methyl‐1‐(pyridin‐2‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H20N4O, (I), formed by nucleophilic substitution, but with 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde the product is (Z)‐4‐[(cyclohexylamino)methylidene]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one, C17H21N3O, (II), formed by condensation followed by hydrolysis. Compound (II) crystallizes with Z′ = 2, and in one of the two independent molecular types the cyclohexylamine unit is disordered over two sets of atomic sites having occupancies of 0.65 (3) and 0.35 (3). The vinylogous amide portion in each compound shows evidence of electronic polarization, such that in each the O atom carries a partial negative charge and the N atom of the cyclohexylamine portion carries a partial positive charge. The molecules of (I) contain an intramolecular N—H...N hydrogen bond, and they are linked by C—H...O hydrogen bonds to form sheets. Each of the two independent molecules of (II) contains an intramolecular N—H...O hydrogen bond and each molecular type forms a centrosymmetric dimer containing one R22(4) ring and two inversion‐related S(6) rings.  相似文献   

19.
A general and efficient methodology for the direct transition metal free trifluoromethylthiolation of a broad range of biologically relevant N‐heteroarenes is reported employing abundant sodium chloride as the catalyst. This method is operationally simple, exhibits high functional group tolerance, and does not require protecting groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号