首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligonucleotides containing halogenated `purine' and pyrimidine bases were synthesized. Bromo and iodo substituents were introduced at the 7‐position of 8‐aza‐7‐deazapurine‐2,6‐diamine (see 2b , c ) or at the 5‐position of uracil residues (see 3b , c ). Phosphoramidites were synthesized after protection of 2b with the isobutyryl residue and of 2c with the benzoyl group. Duplexes containing the residues 2b or 2c gave always higher Tm values than those of the nonmodified counterparts containing 2′‐deoxyadenosine, the purine‐2,6‐diamine 2′‐deoxyribonucleoside ( 1 ), or 2a at the same positions. Six 2b residues replacing dA in the duplex 5′‐d(TAGGTCAATACT)‐3′ ( 11 )⋅5′‐d(AGTATTGACCTA)‐3′ ( 12 ) raised the Tm value from 48 to 75° (4.5° per modification (Table 3)). Contrary to this, incorporation of the 5‐halogenated 2′‐deoxyuridines 3b or 3c into oligonucleotide duplexes showed very little influence on the thermal stability, regardless of which `purine' nucleoside was located opposite to them (Tables 4 and 5). The positive effects on the thermal stability of duplexes observed in DNA were also found in DNA⋅RNA hybrids or in DNA with parallel chain orientation (Tables 8 and 9, resp.).  相似文献   

2.
A series of oligonucleotides containing (5′S)‐5′‐C‐butyl‐ and (5′S)‐5′‐C‐isopentyl‐substituted 2′‐deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl‐zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA‐duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I – III , Fig. 2) could experimentally be realized and their duplex‐forming properties analyzed by UV‐melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type‐ III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B‐DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type‐ II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type‐ III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl‐zipper formation presumably by loss of structured H2O in the minor groove.  相似文献   

3.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N‐aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)2, and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 Å, respectively. The non‐modified PNA duplex adopts a P‐type helical structure similar to that of previously characterized PNAs. The atomic‐level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P‐type helical structure, its flexibility is relatively high. For example, the base‐pair rise in the bipyridine‐containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a π‐stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl‐modified DNA duplexes in solution, where the biphenyls are π stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.  相似文献   

4.
Herein, we describe the incorporation of 2″‐C‐(piperazinomethyl)‐2′,3′‐BcNA (Bicyclic Nucleic Acids) into oligonucleotides via phosphoramidite chemistry and their subsequent solid‐phase functionalization with pyren‐1‐ylcarbonyl units after oligonucleotide synthesis. Thermal denaturation measurements showed that one modification led to increased thermal stability of the resulting duplex, and that two modifications could be incorporated in close proximity without decreasing the duplex stability (compared to the duplex stability of unmodified RNA). Fluorescence studies of the modified duplexes revealed that the structure and intensity of the fluorescence spectra were largely sequence‐dependent. Furthermore, molecular‐modeling studies showed that the pyrene moieties are placed in the major groove, and that the configuration at C(2″) is important for the thermal stability of the duplex.  相似文献   

5.
A 13mer DNA duplex containing the artificial 4‐aminophthalimide:2,4‐diaminopyrimidine (4AP:DAP) base pair in the central position was characterized by optical and NMR spectroscopy. The fluorescence of 4AP in the duplex has a large Stokes shift of Δλ =124 nm and a quantum yield of Φ F=24 %. The NMR structure shows that two interstrand hydrogen bonds are formed and confirms the artificial base pairing. In contrast, the 4‐N ,N ‐dimethylaminophthalimide moiety prefers the syn conformation in DNA. The fluorescence intensity of this chromophore in DNA is very low and the NMR structure shows no significant interaction with DAP. Primer‐extension experiments with DNA polymerases showed that not only is the 4AP C nucleotide incorporated at the desired position opposite DAP in the template, but also that the polymerase is able to progress past this position to give the full‐length product. The observed selectivity supports the NMR results.  相似文献   

6.
The unusually N8‐glycosylated pyrazolo[3,4‐d]pyrimidine‐4,6‐diamine 2′‐deoxyribonucleoside ( 3 ) was synthesized and converted to the phosphoramidite 11 . Oligonucleotides were prepared by solid‐phase synthesis, and the base pairing of compound 3 was studied. In non‐self‐complementary duplexes containing compound 3 located opposite to the four canonical DNA constituents, strong base pairs are formed that show ambiguous pairing properties. The self‐complementary duplex d( 3 ‐T)6 ( 34 ⋅ 34 ) is significantly more stable than d(A‐T)6.  相似文献   

7.
Oligonucleotides containing 7‐deaza‐2′‐deoxyinosine derivatives bearing 7‐halogen substituents or 7‐alkynyl groups were prepared. For this, the phosphoramidites 2b – 2g containing 7‐substituted 7‐deaza‐2′‐deoxyinosine analogues 1b – 1g were synthesized (Scheme 2). Hybridization experiments with modified oligonucleotides demonstrate that all 2′‐deoxyinosine derivatives show ambiguous base pairing, as 2′‐deoxyinosine does. The duplex stability decreases in the order Cd>Ad>Td>Gd when 2b – 2g pair with these canonical nucleosides (Table 6). The self‐complementary duplexes 5′‐d(F7c7I‐C)6, d(Br7c7I‐C)6, and d(I7c7I‐C)6 are more stable than the parent duplex d(c7I‐C)6 (Table 7). An oligonucleotide containing the octa‐1,7‐diyn‐1‐yl derivative 1g , i.e., 27 , was functionalized with the nonfluorescent 3‐azido‐7‐hydroxycoumarin ( 28 ) by the Huisgen–Sharpless–Meldal cycloaddition ‘click’ reaction to afford the highly fluorescent oligonucleotide conjugate 29 (Scheme 3). Consequently, oligonucleotides incorporating the derivative 1g bearing a terminal C?C bond show a number of favorable properties: i) it is possible to activate them by labeling with reporter molecules employing the ‘click’ chemistry. ii) Space demanding residues introduced in the 7‐position of the 7‐deazapurine base does not interfere with duplex structure and stability (Table 8). iii) The ambiguous pairing character of the nucleobase makes them universal probes for numerous applications in oligonucleotide chemistry, molecular biology, and nanobiotechnology.  相似文献   

8.
Oligonucleotides tethered by an alkylene linkage between the O6‐atoms of two consecutive 2′‐deoxyguanosines, which lack a phosphodiester linkage between these residues, have been synthesized as a model system of intrastrand cross‐linked (IaCL) DNA. UV thermal denaturation studies of duplexes formed between these butylene‐ and heptylene‐linked oligonucleotides with their complementary DNA sequences revealed about 20 °C reduction in stability relative to the unmodified duplex. Circular dichroism spectra of the model IaCL duplexes displayed a signature characteristic of B‐form DNA, suggesting minimal global perturbations are induced by the lesion. The model IaCL containing duplexes were investigated as substrates of O6‐alkylguanine DNA alkyltransferase (AGT) proteins from human and E. coli (Ada‐C and OGT). Human AGT was found to repair both model IaCL duplexes with greater efficiency towards the heptylene versus butylene analog adding to our knowledge of substrates this protein can repair.  相似文献   

9.
Reverse Watson–Crick DNA with parallel‐strand orientation (ps DNA) has been constructed. Pyrrolo‐dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3‐d]pyrimidine base have been incorporated in 12‐ and 25‐mer oligonucleotide duplexes and utilized as silver‐ion binding sites. Thermal‐stability studies on the parallel DNA strands demonstrated extremely strong silver‐ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single 2pyPyrdC–2pyPyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver‐ion base pair that aligns 7‐deazapurine bases head‐to‐tail instead of head‐to‐head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson–Crick base pairs stabilized by a dinuclear silver‐mediated PyrdC pair.  相似文献   

10.
The pairing propensity of new DNA analogues with a phosphinato group between O−C(3′) and a newly introduced OCH2 group at C(8) and C(6) of 2′‐deoxyadenosine and 2′‐deoxyuridine, respectively, was evaluated by force‐field calculations and Maruzen model studies. These studies suggest that these analogues may form autonomous pairing systems, and that the incorporation of single modified units into DNA 14mers is compatible with duplex formation. To evaluate the incorporation, we prepared the required phosphoramidites 3 and 4 from 2′‐deoxyadenosine and 2′‐deoxyuridine, respectively. The phosphoramidite 5 was similarly prepared to estimate the influence of a CH2OH group at C(8) on the duplex stability. The modified 14‐mers 6 – 9 were prepared by solid‐phase synthesis. Pairing studies show a decrease of the melting temperature by 2.5° for the duplex 13 ⋅ 9 , and of 6 – 8° for the duplexes 10 ⋅ 6 , 11 ⋅ 6 , 13 ⋅ 7 , and 14 ⋅ 8 , as compared to the unmodified duplexes.  相似文献   

11.
Oligonucleotides composed of 1′,5′‐anhydro‐arabino‐hexitol nucleosides belonging to the L series (L ‐HNA) were prepared and preliminarily studied as a novel potential base‐pairing system. Synthesis of enantiopure L ‐hexitol nucleotide monomers equipped with a 2′‐(N6‐benzoyladenin‐9‐yl) or a 2′‐(thymin‐1‐yl) moiety was carried out by a de novo approach based on a domino reaction as key step. The L oligonucleotide analogues were evaluated in duplex formation with natural complements as well as with unnatural sugar‐modified oligonucleotides. In many cases stable homo‐ and heterochiral associations were found. Besides Tm measurements, detection of heterochiral complexes was unambiguously confirmed by LC‐MS studies. Interestingly, circular dichroism measurements of the most stable duplexes suggested that L ‐HNA form left‐handed helices with both D and L oligonucleotides.  相似文献   

12.
Oligonucleotides carrying alkynyl and aminoalkynyl chains at the position 7 of 7-deazaadenine are synthesized, and the chain lengths as well as the bulkiness of the substituents are varied. The corresponding nucleosides 1a – f are prepared from 7-deaza-2′-deoxy-7-iodoadenosine and the particular alkynes by the Pd0-catalyzed cross-coupling reaction. The nucleosides are converted to the phosphoramidites 2a – f , which are used in solid-phase oligonucleotide synthesis. The stability of the duplexes is determined by the Tm values and the thermodynamic data. Compared to adenine or the unsubstituted 7-deazaadenine, the incorporation of a 7-ethynyl chain in a 7-deazaadenine moiety increases the duplex stability significantly, while a dodecynyl residue or a bulky steroid moiety leads to a duplex destabilization. A 3-aminoprop-1-ynyl residue (see 1g ) or a 5-aminopent-1-ynyl residue (see 1h ), which are charged under neutral conditions, lead to zwitterionic DNA. A high density of charged residues as found in homomers impairs duplex formation, most probably by counter-ion condensation.  相似文献   

13.
The recognition properties of DNA duplexes containing single or triple incorporations of eight different donor-modified (OMe, NH(2)) and acceptor-modified (NO(2)) biphenyl residues as base replacements in opposite positions were probed by UV-melting and by CD and fluorescence spectroscopy. We found a remarkable dependence of duplex stability on the natures of the substituents (donor vs. acceptor). The stabilities of duplexes with one biphenyl pair increase in the order donor/donor < acceptor/donor < acceptor/acceptor substitution. The most stable biphenyl pairs stabilize duplexes by up to 6 degrees C in T(m). In duplexes with three consecutive biphenyl pairs the stability increases in the inverse order (acceptor/acceptor < donor/acceptor < donor/donor) with increases in T(m), relative to an unmodified duplex, of up to 10 degrees C. A thermodynamic analysis, combined with theoretical calculations of the physical properties of the biphenyl substituents, suggests that in duplexes with single biphenyl pairs the affinity is dominated by electrostatic forces between the biphenyl/nearest neighbor natural base pairs, whereas in the triple-modified duplexes the increase in thermal stability is predominantly determined by hydrophobic interactions of the biphenyl residues with each other. Oligonucleotides containing amino biphenyl residues are fluorescent. Their fluorescence is largely quenched when they are paired with themselves or with nitrobiphenyl-containing duplex partners.  相似文献   

14.
The title compound (systematic name: methyl 2‐{2‐[(tert‐butoxycarbonyl)amino]‐2‐methylpropanamido}‐2‐methylpropanoate), C14H26N2O5, (I), crystallizes in the monoclinic space group P21/n in two polymorphic forms, each with one molecule in the asymmetric unit. The molecular conformation is essentially the same in both polymorphs, with the α‐aminoisobutyric acid (Aib) residues adopting ϕ and ψ values characteristic of α‐helical and mixed 310‐ and α‐helical conformations. The helical handedness of the C‐terminal residue (Aib2) is opposite to that of the N‐terminal residue (Aib1). In contrast to (I), the closely related peptide Boc‐Aib‐Aib‐OBn (Boc is tert‐butoxycarbonyl and Bn is benzyl) adopts an αL‐PII backbone conformation (or the mirror image conformation). Compound (I) forms hydrogen‐bonded parallel β‐sheet‐like tapes, with the carbonyl groups of Aib1 and Aib2 acting as hydrogen‐bond acceptors. This seems to represent an unusual packing for a protected dipeptide containing at least one α,α‐disubstituted residue.  相似文献   

15.
The solution structure of the self‐complementary deca‐ribonucleotide 5′‐r(GCGA*AUUCGC)‐3′ containing 9‐[2‐O‐(β‐D ‐ribofuranosyl)‐β‐D ‐ribofuranosyl]adenine (A*), a modified nucleotide that occurs in lower eukaryotic methionine initiator tRNAs (tRNAsiMet), was determined by NMR spectroscopy. Unexpectedly, the modification has no effect on the thermal stability of the duplex. However, the extra ribose moiety is in the C(3′)‐endo conformation and takes up a well‐defined position in the minor groove, which is in agreement with its position in tRNAsiMet as determined by X‐ray crystallography. Molecular‐dynamics simulations on the RNA duplex in H2O show that the position of the extra ribofuranose moiety seems to be stabilized by bridged H‐bonds (mediated by two H2O molecules) to the backbone of the complementary chain.  相似文献   

16.
The interaction of β‐peptides with the DNA duplexes of dA20dT20 and a GCN4‐binding CRE sequence was examined. To gauge the factors that govern these interactions, two β‐pentadecapeptides, 1 and 2 , a β‐dodecapeptide, 3 , three β‐decapeptides, 4 – 6 , three β‐heptapeptides, 7 – 9 , and β‐octaarginine 10 were designed and synthesized. The β‐peptides were conceived to adopt a β‐peptide 314 helix, in which the side chains at position i and i + 3 are aligned vertically along one side of the helix. The side chains of Lys, Asn, and Arg were positioned such that potential H‐bonding sites were created for a helical conformation to interact with the base pairs of DNA. CD Analysis showed that β‐peptides 1, 2 , and 10 interacted with dA20dT20. In addition, β‐peptides 1 and 2 showed significant interaction with a DNA‐duplex 20mer containing the ATF/CREB recognition sequence for the regulatory protein GCN4. It is impossible, at this stage of the investigation, to make a safe proposal about the actual nature of the interaction of the structures(s) of the complexes, the formation of which is suggested by the CD spectra reported herein.  相似文献   

17.
Elucidating local dynamics of protein aggregation is crucial for understanding the mechanistic details of protein amyloidogenesis. Herein, we studied the residue‐specific dynamics and local environmental changes of Aβ40 along the course of aggregation by using para‐cyanophenylalanine (PheCN) as a fluorescent and vibrational probe. Our results show that the PheCN residues introduced at various positions all exhibited an immediate decay of fluorescence intensity, indicating a relatively synergistic process in early oligomer formation. The fast decreases in the fluorescence intensities of residues 19 and 20 in the central hydrophobic core region and residue 10 in the N‐terminal region suggest that they play crucial roles in the formation of the oligomeric core. The PheCN4 residue exhibits a remarkably slower decrease in fluorescence intensity, implicating its dynamic conformational characteristics in oligomer and fibril formation. Our results also suggest that the N‐terminal residues in fibrils are surrounded by a relatively hydrophobic local environment, as opposed to being solvated.  相似文献   

18.
Isopropylidene‐protected (S)‐4‐O‐(methylsulfonyl)butane‐1,2,4‐triol was used for alkylation of 5‐[(pyren‐3‐yl)methylidene]hydantoin to give the N3‐monoalkylated product 4 in 29% yield together with a dialkylated product 5 in 12% yield. After deprotection, compound 4 was transformed into a dimethoxytrityl (DMT)‐protected phosphoramidite building block 9 for standard DNA synthesis. When inserted as a bulge in the triplex‐forming oligomer, compound 6 stabilizes a DNA triplex, whereas the corresponding DNA/DNA and DNA/RNA duplexes are slightly destabilized. For the triplex, fluorescence enhancement was observed at 500 nm.  相似文献   

19.
Reported herein is a study of the unusual 3′–3′ 1,4‐GG interstrand cross‐link (IXL) formation in duplex DNA by a series of polynuclear platinum anticancer complexes. To examine the effect of possible preassociation through charge and hydrogen‐bonding effects the closely related compounds [{trans‐PtCl(NH3)2}2(μ‐trans‐Pt(NH3)2{NH2(CH2)6NH2}2)]4+ (BBR3464, 1 ), [{trans‐PtCl(NH3)2}2(μ‐NH2(CH2)6NH2)]2+ (BBR3005, 2 ), [{trans‐PtCl(NH3)2}2(μ‐H2N(CH2)3NH2(CH2)4)]3+ (BBR3571, 3 ) and [{trans‐PtCl(NH3)2}2{μ‐H2N(CH2)3‐N(COCF3)(CH2)4}]2+ (BBR3571‐COCF3, 4 ) were studied. Two different molecular biology approaches were used to investigate the effect of DNA template upon IXL formation in synthetic 20‐base‐pair duplexes. In the “hybridisation directed” method the monofunctionally adducted top strands were hybridised with their complementary 5′‐end labelled strands; after 24 h the efficiency of interstrand cross‐linking in the 5′–5′ direction was slightly higher than in the 3′–3′ direction. The second method involved “postsynthetic modification” of the intact duplex; significantly less cross‐linking was observed, but again a slight preference for the 5′–5′ duplex was present. 2D [1H, 15N] HSQC NMR spectroscopy studies of the reaction of [15N]‐ 1 with the sequence 5′‐d{TATACATGTATA}2 allowed direct comparison of the stepwise formation of the 3′–3′ IXL with the previously studied 5′–5′ IXL on the analogous sequence 5′‐d(ATATGTACATAT)2. Whereas the preassociation and aquation steps were similar, differences were evident at the monofunctional binding step. The reaction did not yield a single distinct 3′–3′ 1,4‐GG IXL, but numerous cross‐linked adducts formed. Similar results were found for the reaction with the dinuclear [15N]‐ 2 . Molecular dynamics simulations for the 3′–3′ IXLs formed by both 1 and 2 showed a highly distorted structure with evident fraying of the end base pairs and considerable widening of the minor groove.  相似文献   

20.
Reversible photo‐cross‐linking of a DNA duplex through the [2+2] photocycloaddition of styrylpyrene is reported. Styrylpyrene moieties on d ‐threoninol linkers were introduced into complementary positions on DNA strands. Irradiation of the styrylpyrene pair in the duplex with visible light at λ=455 nm induced a [2+2] photocycloaddition between styrylpyrenes that cross‐linked the two strands of the duplex. Two diastereomers were formed after [2+2] photocycloaddition as a result of rotation of the styrylpyrene residues. Also, the cycloreversion reaction was induced by UV light at λ=340 nm, which reversibly yielded the uncross‐linked strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号