首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
We have shown previously that iodosylbenzene–iron(III ) porphyrin intermediates ( 2 ) are generated in the reactions of oxoiron(IV ) porphyrin π‐cation radicals ( 1 ) and iodobenzene (PhI), that 1 and 2 are at equilibrium in the presence of PhI, and that the epoxidation of olefins by 2 affords high yields of epoxide products. In the present work, we report detailed mechanistic studies on the nature of the equilibrium between 1 and 2 in the presence of iodoarenes (ArI), the determination of reactive species responsible for olefin epoxidation when two intermediates (i.e., 1 and 2 ) are present in a reaction solution, and the fast oxygen exchange between 1 and H218O in the presence of ArI. In the first part, we have provided strong evidence that 1 and 2 are indeed at equilibrium and that the equilibrium is controlled by factors such as the electronic nature of iron porphyrins, the electron richness of ArI, and the concentration of ArI. Secondly, we have demonstrated that 1 is the sole active oxidant in olefin epoxidation when 1 and 2 are present concurrently in a reaction solution. Finally, we have shown that the presence of ArI in a reaction solution containing 1 and H218O facilitates the oxygen exchange between the oxo group of 1 and H218O and that the oxygen exchange is markedly influenced by factors such as ArI incubation time, the amounts of ArI and H218O used, and the electronic nature of ArI. The latter results are rationalized by the formation of an undetectable amount of 2 from the reaction of 1 and ArI through equilibrium that leads to a fast oxygen exchange between 2 and H218O.  相似文献   

2.
3.
4.
The proximal axial ligand in heme iron enzymes plays an important role in tuning the reactivities of iron(IV)‐oxo porphyrin π‐cation radicals in oxidation reactions. The present study reports the effects of axial ligands in olefin epoxidation, aromatic hydroxylation, alcohol oxidation, and alkane hydroxylation, by [(tmp)+. FeIV(O)(p‐Y‐PyO)]+ ( 1 ‐Y) (tmp=meso‐tetramesitylporphyrin, p‐Y‐PyO=para‐substituted pyridine N‐oxides, and Y=OCH3, CH3, H, Cl). In all of the oxidation reactions, the reactivities of 1 ‐Y are found to follow the order 1 ‐OCH3 > 1 ‐CH3 > 1 ‐H > 1 ‐Cl; negative Hammett ρ values of ?1.4 to ?2.7 were obtained by plotting the reaction rates against the σp values of the substituents of p‐Y‐PyO. These results, as well as previous ones on the effect of anionic nucleophiles, show that iron(IV)‐oxo porphyrin π‐cation radicals bearing electron‐donating axial ligands are more reactive in oxo‐transfer and hydrogen‐atom abstraction reactions. These results are counterintuitive since iron(IV)‐oxo porphyrin π‐cation radicals are electrophilic species. Theoretical calculations of anionic and neutral ligands reproduced the counterintuitive experimental findings and elucidated the root cause of the axial ligand effects. Thus, in the case of anionic ligands, as the ligand becomes a better electron donor, it strengthens the FeO? H bond and thereby enhances its H‐abstraction activity. In addition, it weakens the Fe?O bond and encourages oxo‐transfer reactivity. Both are Bell–Evans–Polanyi effects, however, in a series of neutral ligands like p‐Y‐PyO, there is a relatively weak trend that appears to originate in two‐state reactivity (TSR). This combination of experiment and theory enabled us to elucidate the factors that control the reactivity patterns of iron(IV)‐oxo porphyrin π‐cation radicals in oxidation reactions and to resolve an enigmatic and fundamental problem.  相似文献   

5.
6.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

7.
The mechanism of N‐dealkylation mediated by cytochrome P450 (P450) has long been studied and argued as either a single electron transfer (SET) or a hydrogen atom transfer (HAT) from the amine to the oxidant of the P450, the reputed iron–oxene. In our study, tertiary anilinic N‐oxides were used as oxygen surrogates to directly generate a P450‐mediated oxidant that is capable of N‐dealkylating the dimethylaniline derived from oxygen donation. These surrogates were employed to probe the generated reactive oxygen species and the subsequent mechanism of N‐dealkylation to distinguish between the HAT and SET mechanisms. In addition to the expected N‐demethylation of the product aniline, 2,3,4,5,6‐pentafluoro‐N,N‐dimethylaniline N‐oxide (PFDMAO) was found to be capable of N‐dealkylating both N,N‐dimethylaniline (DMA) and N‐cyclopropyl‐N‐methylaniline (CPMA). Rate comparisons of the N‐demethylation of DMA supported by PFDMAO show a 27‐fold faster rate than when supported by N,N‐dimethylaniline N‐oxide (DMAO). Whereas intermolecular kinetic isotope effects were masked, intramolecular measurements showed values reflective of those seen previously in DMAO‐ and the native NADPH/O2‐supported systems (2.33 and 2.8 for the N‐demethylation of PFDMA and DMA from the PFDMAO system, respectively). PFDMAO‐supported N‐dealkylation of CPMA led to the ring‐intact product N‐cyclopropylaniline (CPA), similar to that seen with the native system. The formation of CPA argues against a SET mechanism in favor of a P450‐like HAT mechanism. We suggest that the similarity of KIEs, in addition to the formation of the ring‐intact CPA, argues for a similar mechanism of Compound I (Cpd I) formation followed by HAT for N‐dealkylation by the native and N‐oxide‐supported systems and demonstrate the ability of the N‐oxide‐generated oxidant to act as an accurate mimic of the native P450 oxidant.  相似文献   

8.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

9.
Recently, it was shown that μ‐oxo‐μ‐peroxodiiron(III) is converted to high‐spin μ‐oxodioxodiiron(IV) through O?O bond scission. Herein, the formation and high reactivity of the anti‐dioxo form of high‐spin μ‐oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic‐absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ‐oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is toluene<ethylbenzene≈cumene<trans‐β‐methylstyrene. The rate constants increased proportionally to the substrate concentration at low substrate concentration. At high substrate concentration, however, the rate constants converge to the same value regardless of the kind of substrate. This is explained by a two‐step mechanism in which anti‐μ‐oxodioxodiiron(IV) is formed by syn‐to‐anti transformation of the syn‐dioxo form and reacts with substrates as the oxidant. The anti‐dioxo form is 620 times more reactive in the C?H bond cleavage of ethylbenzene than the most reactive diiron system reported so far. The KIE for the reaction with toluene/[D8]toluene is 95 at ?30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2O2.  相似文献   

10.
11.
Kinetic and mechanistic studies on the formation of an oxoiron(IV) porphyrin cation radical bearing a thiolate group as proximal ligand are reported. The SR complex, a functional enzyme mimic of P450, was oxidized in peroxo‐shunt reactions under different experimental conditions with variation of solvent, temperature, and identity and excess of oxidant in the presence of different organic substrates. Through the application of a low‐temperature rapid‐scan stopped‐flow technique, the reactive intermediates in the SR catalytic cycle, such as the initially formed SR acylperoxoiron(III) complex and the SR high‐valent iron(IV) porphyrin cation radical complex [( SR .+)FeIV?O], were successfully identified and kinetically characterized. The oxidation of the SR complex under catalytic conditions provided direct spectroscopic information on the reactivity of [( SR .+)FeIV?O] towards the oxidation of selected organic substrates. Because the catalytically active species is a synthetic oxoiron(IV) porphyrin cation radical bearing a thiolate proximal group, the effect of the strong electron donor ligand on the formation and reactivity/stability of the SR high‐valent iron species is addressed and discussed in the light of the reactivity pattern observed in substrate oxygenation reactions catalyzed by native P450 enzyme systems.  相似文献   

12.
Hydrazonyl radicals are known for their π‐electronic structures; however, their σ‐electronic structures have not been reported as yet. Herein, we show that readily accessible β,γ‐ and γ,δ‐unsaturated N‐trichloroacetyl and N‐trifluoroacetyl hydrazones can be conveniently converted into hydrazonyl σ radicals, which subsequently undergo 5‐exo‐trig radical cyclization at the N1 or N2 atom to form pyrazolines and azomethine imines, respectively.  相似文献   

13.
14.
Reactions of nonheme FeIII–superoxo and MnIV–peroxo complexes bearing a common tetraamido macrocyclic ligand (TAML), namely [(TAML)FeIII(O2)]2? and [(TAML)MnIV(O2)]2?, with nitric oxide (NO) afford the FeIII–NO3 complex [(TAML)FeIII(NO3)]2? and the MnV–oxo complex [(TAML)MnV(O)]? plus NO2?, respectively. Mechanistic studies, including density functional theory (DFT) calculations, reveal that MIII–peroxynitrite (M=Fe and Mn) species, generated in the reactions of [(TAML)FeIII(O2)]2? and [(TAML)MnIV(O2)]2? with NO, are converted into MIV(O) and .NO2 species through O?O bond homolysis of the peroxynitrite ligand. Then, a rebound of FeIV(O) with .NO2 affords [(TAML)FeIII(NO3)]2?, whereas electron transfer from MnIV(O) to .NO2 yields [(TAML)MnV(O)]? plus NO2?.  相似文献   

15.
Starting from β,γ‐allendiols and α‐allenic acetates, a chemo‐ and regiocontrolled palladium‐catalyzed methodology has provided access to enantiopure 3,6‐dihydropyrans that bear a buta‐1,3‐dienyl moiety. Thus, it has been demonstrated for the first time that the preparation of six‐membered heterocycles through cross‐coupling reactions of two different allenes can be accomplished. These heterocyclization/cross‐coupling reactions have been developed experimentally and their mechanisms have additionally been investigated by a computational study.  相似文献   

16.
17.
The synthesis of α‐substituted carbonyl compounds is of great importance due to their ubiquity in both natural and man‐made biologically active compounds. The field of hypervalent iodine chemistry has been a great contributor to access these molecules. For example, the α‐oxidation of carbonyl compounds has been one of the most investigated iodine(III)‐mediated stereoselective transformations. Yet, it is also the transformation that has met the most challenge in terms of achieving high stereoselectivities. The different mechanistic pathways of the iodine(III)‐mediated α‐tosyloxylation of ketones have been investigated. The calculations suggest an unprecedented iodine(III)‐promoted enolization process. Indications that iodonium intermediates could serve as proficient Lewis acids are reported. This concept could have broad impact and foster new developments in the field of hypervalent iodine chemistry.  相似文献   

18.
Electrophilic additions of HCl to a series of asymmetric alkenes in the gas phase are investigated by the Molecular Face (MF) theory and ABEEM‐σπ model. The interesting features of regioselectivity for these reactions are characterized by the electron density (ED) encoded on the MF of alkenes and charge distribution of alkenes obtained via the ABEEM‐σπ model, respectively. It is then demonstrated that for a series of alkenes, the Hammett constant σp (substituent constant) has a good linear correlation with KED, where KED is character of the ED at the π region in the initial state of alkenes. Comparison between investigations using MF, ABEEM‐σπ, molecular electrostatic potential, and DFT theories, in essence, give similar conclusions for explaining the regioselectivity of the electrophilic additions to alkenes, although from different points of view. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
Reactions of N,N‐dimethylaniline (DMA) with nonheme iron(IV)‐oxo and iron(IV)‐tosylimido complexes occur via different mechanisms, such as an N‐demethylation of DMA by a nonheme iron(IV)‐oxo complex or an electron transfer dimerization of DMA by a nonheme iron(IV)‐tosylimido complex. The change in the reaction mechanism results from the greatly enhanced electron transfer reactivity of the iron(IV)‐tosylimido complex, such as the much more positive one‐electron reduction potential and the smaller reorganization energy during electron transfer, as compared to the electron transfer properties of the corresponding iron(IV)‐oxo complex.  相似文献   

20.
High‐spin iron(III)‐iodosylarene complexes are highly reactive in the epoxidation of olefins, in which epoxides are formed as the major products with high stereospecificity and enantioselectivity. The reactivity of the iron(III)‐iodosylarene intermediates is much greater than that of the corresponding iron(IV)‐oxo complex in these reactions. The iron(III)‐iodosylarene species—not high‐valent iron(IV)‐oxo and iron(V)‐oxo species—are also shown to be the active oxidants in catalytic olefin epoxidation reactions. The present results are discussed in light of the long‐standing controversy on the one oxidant versus multiple oxidants hypothesis in oxidation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号