首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
For a complementary hydrogen‐bonded complex, when every hydrogen‐bond acceptor is on one side and every hydrogen‐bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA–DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen‐bonded sequences. The easily synthesized and further derivatized AAA–DDD system is very desirable for hydrogen‐bonded functional materials. In this case, AAA and DDD, starting from 4‐methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×107 M ?1. The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA–DDD triply hydrogen bonded have also been developed. This work may make AAA–DDD triply hydrogen‐bonded sequences easily accessible for stimuli‐responsive materials.  相似文献   

4.
5.
The article discusses the development and properties of supramolecular polymers based on quadruple hydrogen bonds between self‐complementary ureidotriazine (UTr) and ureidopyrimidinone (UPy) functional groups. The high association constant with which these groups dimerize leads to polymers with a high degree of polymerization in isotropic solution. Application of these units for the functionalization of telechelic polymers results in new materials with mechanical properties approaching those of covalent polymers, but with a much stronger temperature‐dependent behavior. Solvophobic interactions between the hydrogen bonding moieties may be used to obtain supramolecular polymers with a well defined helical columnar architecture. Another consequence of the high dimerization constant of the UPy group is the phenomenon of a critical concentration in solutions of many bifunctional monomers. Below this concentration, only cycles are present, while above the critical concentration, the amount of cycles remains constant, and a polymer is formed. Conformational properties of the linker units are used to control the equilibrium between polymers and cycles, and are proposed to form a promising strategy toward tunable materials.

Supramolecular polymer material with elastomeric properties resulting from functionalization with UPy groups. (Reproduced with permission. © John Wiley & Sons, Inc.)  相似文献   


6.
7.
We present an approach that makes use of DNA base pairing to produce hydrogen‐bonded macrocycles whose supramolecular structure can be transferred from solution to a solid substrate. A hierarchical assembly process ultimately leads to two‐dimensional nanostructured porous networks that are able to host size‐complementary guests.  相似文献   

8.
Confined in a molecular corral : A supramolecular network changes the mechanism by which underpotential deposition (UPD) of copper proceeds on a gold electrode modified by a self‐assembled monolayer (SAM). Lateral diffusion of Cu adatoms is suppressed between adjacent cells of a network/SAM hybrid structure. Instead, UPD occurs by direct deposition into the SAM filled pores of the network, where the Cu adatoms are confined.

  相似文献   


9.
Remote chiral communication in 2D supramolecular assembly at a liquid/solid interface was investigated at the molecular level. The stereochemical information in a chiral coadsorber was transmitted over a flexible spacer with a length of up to five methylene groups to a 2D supramolecular assembly of achiral building blocks with the cooperation of specific hydrogen bonding between the chiral coadsorber and achiral building blocks and the confinement effect during 2D crystallization. When the position of the stereogenic center was changed with respect to the stereocontrolling moiety, an odd–even effect was found. A stereogenic center closer to the stereocontrolling moiety transmitted the stereochemical information to the 2D supramolecular assembly more reliably. This result is beneficial not only for mechanistic understanding of chiral communication in 2D supramolecular assembly on surfaces but also for the rational design of homochiral supramolecular assemblies on surfaces.  相似文献   

10.
11.
Diarylethene 1 equipped with two monotopic melamine hydrogen‐bonding sites and oligothiophene‐functionalized ditopic cyanurate (OTCA) were mixed in a nonpolar solvent to form AA‐BB‐type supramolecular co‐polymers (SCPs) bearing photoswitchable moieties in their main chains and extended π systems as side chains. UV/Vis, fluorescence, dynamic light scattering (DLS), TEM, and AFM studies revealed that the two functional co‐monomers formed flexible quasi‐one‐dimensional SCPs in solution that hierarchically self‐organized into helical nanofibers through H‐aggregation of the oligothiophene side chains. Upon irradiating the SCPs with UV light, a transition occurred from the H‐aggregated state to non‐aggregated monomeric oligothiophene side chains, as shown by spectroscopic studies, which indicates the formation of small oligomeric species held together only by hydrogen‐bonding interactions. TEM and AFM visualized unfolded fibrils corresponding to elongated single SCP chains formed upon removal of solvent. The helical nanofibers were regenerated upon irradiating the UVirradiated solution with visible light. These results demonstrated that the supramolecular polymerisation followed by hierarchical organization can be effectively controlled by proper supramolecular designs using diarylethenes and π‐conjugated oligomers.  相似文献   

12.
In the context of designing novel amino acid nanostructures, the capacity of tyrosine alone to form well‐ordered structures under different conditions was explored. It was observed that Tyr can self‐assemble into well‐defined morphologies when deposited onto surfaces for transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. The influence of various parameters that can modulate the self‐assembly process, including concentration of the amino acid, aging time, and solvent, was studied. Different supramolecular architectures, including nanoribbons, branched structures, and fern‐like arrangements were also observed.  相似文献   

13.
14.
15.
16.
17.
Cyclotrimerization‐induced chiral supramolecular structures of 4‐ethynyltriphenylamine (ETPA) have been synthesized on the Au(111) surface through alkyne‐based reactions. Whereas the ETPA molecules adsorbed on the Au(111) surface remain inert and form a close‐packed self‐assembled structure at room temperature, the combination of scanning tunneling microscopy observations and theoretical calculations unambiguously reveal that the ETPA molecules cyclotrimerize to form new trimer‐like species—1,3,5‐tris[4‐(diphenylamino)phenyl]benzene (TPAPB)—after annealing at 323 K. Further annealing drives these cyclotrimerized TPAPB molecules to form chiral hexagonal supramolecular structures with an extraordinary self‐healing ability.  相似文献   

18.
Chiral induction and amplification in surface‐confined supramolecular monolayers are investigated at the liquid–solid interface. Scanning tunneling microscopy (STM) proves that achiral molecules can self‐assemble into globally chiral patterns through a variety of approaches, including induction by chiral solvents or by a novel chiral amplification method. Our study demonstrates the aptness of both approaches, which have already been applied to (supramolecular) polymers in solution, to create chiral supramolecular monolayers at the liquid–solid interface.  相似文献   

19.
20.
The formation of 2D surface‐confined supramolecular porous networks is scientifically and technologically appealing, notably for hosting guest species and confinement phenomena. In this study, we report a scanning tunneling microscopy (STM) study of the self‐assembly of a tripod molecule specifically equipped with pyridyl functional groups to steer a simultaneous expression of lateral pyridyl–pyridyl interactions and Cu–pyridyl coordination bonds. The assembly protocols yield a new class of porous open assemblies, the formation of which is driven by multiple interactions. The tripod forms a purely porous organic network on Ag(111), phase α, in which the presence of the pyridyl groups is crucial for porosity, as confirmed by molecular dynamics and Monte Carlo simulations. Additional deposition of Cu dramatically alters this scenario. For submonolayer coverage, three different porous phases coexist (i.e., β, γ, and δ). Phases β and γ are chiral and exhibit a simultaneous expression of lateral pyridyl–pyridyl interactions and twofold Cu–pyridyl linkages, whereas phase δ is just stabilized by twofold Cu–pyridyl bonds. An increase in the lateral molecular coverage results in a rise in molecular pressure, which leads to the formation of a new porous phase (ε), only coexisting with phase α and stabilized by a simultaneous expression of lateral pyridyl–pyridyl interactions and threefold Cu–pyridyl bonds. Our results will open new avenues to create complex porous networks on surfaces by exploiting components specifically designed for molecular recognition through multiple interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号