共查询到20条相似文献,搜索用时 12 毫秒
1.
Teemu Niemi Dr. Jesus E. Perea‐Buceta Dr. Israel Fernández Dr. Sami Alakurtti Erika Rantala Prof. Timo Repo 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(29):8867-8871
The reaction of β‐ and γ‐haloamines with carbon dioxide to give pharmaceutically relevant 2‐oxazolidinones and 1,3‐dioxazin‐2‐ones, was found to proceed efficiently in the presence of a base and in the absence of catalyst. After optimization of reaction conditions, the system was successfully expanded to a variety of haloamines, even at multigram scale. The reaction was further studied in silico by DFT calculations. 相似文献
2.
Role of Achiral Nucleobases in Multicomponent Chiral Self‐Assembly: Purine‐Triggered Helix and Chirality Transfer 下载免费PDF全文
Ming Deng Dr. Li Zhang Dr. Yuqian Jiang Prof. Dr. Minghua Liu 《Angewandte Chemie (International ed. in English)》2016,55(48):15062-15066
Chiral self‐assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self‐assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N‐(9‐fluorenylmethox‐ycarbonyl) (Fmoc)‐protected glutamic acid to self‐assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self‐assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality. 相似文献
3.
Shih‐Chieh Lin Prof. Rong‐Ming Ho Chin‐Yen Chang Prof. Chain‐Shu Hsu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(29):9091-9098
Herein, two asymmetric chiral bent‐core molecules, 3‐[(4‐{[4‐(heptyloxy)benzoyl]oxy}benzoyl)oxy]‐phenyl‐4‐[(4‐{[(1R)‐1‐methylheptyl]oxy}benzoyl)oxy] benzoate (BC7R) and 3‐[(4‐{[4‐(heptyloxy)benzoyl]oxy}benzoyl)oxy]‐phenyl‐4‐[(4‐{[(1S)‐1‐methylheptyl]oxy}benzoyl)oxy] benzoate (BC7S), were synthesized to demonstrate control of the helicity of their self‐assembled hierarchical superstructures. Mirror‐imaged CD spectra showed a split‐type Cotton effect after the formation of self‐assembled aggregates of BC7R and BC7S, thereby suggesting the formation of intermolecular exciton couplets with opposite optical activities. Both twisted and helical ribbons with preferential helicity that corresponded to the twisting character of the intermolecular exciton couplet were found in the aggregates. The formation of helical ribbons was attributed to the merging of twisted ribbons through an increase in width to improve morphological stability. As a result, control of the helicity of hierarchical superstructures from the self‐assembly of bent‐core molecules could be achieved by taking advantage of the transfer of chiral information from the molecular level onto the hierarchical scale. 相似文献
4.
Control of Chiral Nanostructures by Self‐Assembly of Designed Amphiphilic Peptides and Silica Biomineralization 下载免费PDF全文
Zhehao Huang Dr. Yuan Yao Dr. Lu Han Prof. Shunai Che 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(51):17068-17076
Peptides, the fundamental building units of biological systems, are chiral in molecular scale as well as in spatial conformation. Shells are exquisite examples of well‐defined chiral structures produced by natural biomineralization. However, the fundamental mechanism of chirality expressed in biological organisms remains unclear. Here, we present a system that mimics natural biomineralization and produces enantiopure chiral inorganic materials with controllable helicity. By tuning the hydrophilicity of the amphiphilic peptides, the chiral morphologies and mesostructures can be changed. With decreasing hydrophilicity of the amphiphilic peptides, we observed that the nanostructures changed from twisted nanofibers with a hexagonal mesostructure to twisted nanoribbons with a lamellar mesostructure, and the extent of the helicity decreased. Defining the mechanism of chiral inorganic materials formed from peptides by noncovalent interactions can improve strategies toward the bottom‐up synthesis of nanomaterials as well as in the field of bioengineering. 相似文献
5.
Dr. Geraldine Echue Prof. Guy C. Lloyd‐Jones Dr. Charl F. J. Faul 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(13):5118-5128
A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid L ‐phenylalanine. Detailed studies were carried out into the self‐assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right‐handed helical aggregates in aqueous solution. Temperature‐dependent UV/Vis studies of BTPPP in aqueous solution showed that the self‐assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide‐angle X‐ray diffraction studies (WXRD) revealed that this material self‐organises into aggregates with π–π stacking distances typical for π‐conjugated materials. TEM investigations revealed the formation of self‐assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid–crystalline phases were observed for solvent‐annealed samples of BTPPP. The high solubility, tunable self‐assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro‐optical structures and devices. 相似文献
6.
Silvia Suárez‐Suárez Prof. Gabino A. Carriedo Prof. M. Pilar Tarazona Dr. Alejandro Presa Soto 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(18):5644-5653
A series of optically active helical polyphosphazene block copolymers of general formula R? [N?P(O2C20H12)]n‐b‐[N?PMePh]m (R‐ 7 a – c ) was synthesized and characterized. The polymers were prepared by sequential living cationic polycondensation of N‐silylphosphoranimines using the mono‐end‐capped initiator [Ph3P?N?PCl3][PCl6] ( 5 ) and exhibit a low polydispersity index (ca. 1.3). The temperature dependence of the specific optical activity ([α]D) of R‐ 7 a , b relative to that for the homopolymers R‐[N?P(O2C20H12)]n (R‐ 8 a ) and the R/S analogues (R/S‐ 7 a , b ), revealed that the binaphthoxy–phosphazene segments induce a preferential helical conformation in the [N?PMePh] blocks through a “sergeant‐and‐soldiers” mechanism, an effect that is unprecedented in polyphosphazenes. The self‐assembly of drop‐cast thin films of the chiral block copolymer R‐ 7 b (bearing a long chiral and rigid R? [N?P(O2C20H12)] segment) evidenced a transfer of helicity mechanism, leading to the formation of twisted morphologies (twisted “pearl necklace”), not observed in the nonchiral R/S‐ 7 b . The chiral R‐ 7 a and the nonchiral R/S‐ 7 a , self‐assemble by a nondirected morphology reconstruction process into regular‐shaped macroporous films with chiral‐rich areas close to edge of the pore. This is the first nontemplate self‐assembly route to chiral macroporous polymeric films with pore size larger than 50 nm. The solvent annealing (THF) of these films leads to the formation of regular spherical nanostructures (ca. 50 nm), a rare example of nanospheres exclusively formed by synthetic helical polymers. 相似文献
7.
《Angewandte Chemie (International ed. in English)》2017,56(41):12518-12522
The newly developed oligophenylenevinylene (OPV)‐based fluorescent (FL) chiral chemosensor (OPV‐Me) for the representative enantiomeric guest, 1,2‐cyclohexanedicarboxylic acid (1,2‐CHDA: RR ‐ and SS ‐form) showed the high chiral discrimination ability, resulting in the different aggregation modes of OPV‐Me self‐assembly: RR ‐CHDA directed the fibrous supramolecular aggregate, whereas SS ‐CHDA directed the finite aggregate. The consequent FL intensity toward RR ‐CHDA was up to 30 times larger than that toward SS ‐CHDA. Accordingly, highly enantioselective recognition was achieved. Application to the chirality sensing was also possible: OPV‐Me exhibited a linear relationship between the FL intensity and the enantiomeric excess through the morphological development of stereocomplex aggregates. These results clearly show that the chiral recognition ability is manifested by the amplification cascade of the chirality difference through self‐assembly. 相似文献
8.
Lanthanide Complexes with Multidentate Oxime Ligands as Single‐Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems 下载免费PDF全文
Dr. Małgorzata Hołyńska Dr. Rodolphe Clérac Mathieu Rouzières 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(38):13321-13329
The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 ( 1 : [La2(pop)2(acac)4(CH3OH)], 2 : [Dy2(pop)(acac)5]) are synthesized from the 2‐hydroxyimino‐N‐[1‐(2‐pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3 , 4 , and 5 ( 3 : [Dy2(naphthsaoH)2(acac)4H(OH)]?0.85 CH3CN?1.58 H2O; 4 : [Tb2(naphthsaoH)2(acac)4H(OH)]?0.52 CH3CN?1.71 H2O; 5 : [La6(CO3)2(naphthsao)5 (naphthsaoH)0.5(acac)8(CO3)0.5(CH3OH)2.76H5.5(H2O)1.24]?2.39 CH3CN?0.12 H2O) contain 1‐(1‐hydroxynaphthalen‐2‐yl)‐ethanone oxime (naphthsaoH2). In 1 – 4 , dinuclear [Ln2] complexes crystallize, whereas hexanuclear LaIII complex 5 is formed after fixation of atmospheric carbon dioxide. DyIII‐based complexes 2 and 3 display single‐molecule‐magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy3+ ions. 相似文献
9.
金属元素和CO2形成配合物已有详尽的综述,介绍近年来用过渡金属催化固定 CO2以及利用有机胺、醇类化合物固定CO2生成有机的最新研究进展。 相似文献
10.
Dr. Dimitrios Priftis Dr. Lorraine Leon Ziyuan Song Dr. Sarah L. Perry Khatcher O. Margossian Anna Tropnikova Prof. Jianjun Cheng Prof. Matthew Tirrell 《Angewandte Chemie (International ed. in English)》2015,54(38):11128-11132
Reported is the ability of α‐helical polypeptides to self‐assemble with oppositely‐charged polypeptides to form liquid complexes while maintaining their α‐helical secondary structure. Coupling the α‐helical polypeptide to a neutral, hydrophilic polymer and subsequent complexation enables the formation of nanoscale coacervate‐core micelles. While previous reports on polypeptide complexation demonstrated a critical dependence of the nature of the complex (liquid versus solid) on chirality, the α‐helical structure of the positively charged polypeptide prevents the formation of β‐sheets, which would otherwise drive the assembly into a solid state, thereby, enabling coacervate formation between two chiral components. The higher charge density of the assembly, a result of the folding of the α‐helical polypeptide, provides enhanced resistance to salts known to inhibit polypeptide complexation. The unique combination of properties of these materials can enhance the known potential of fluid polypeptide complexes for delivery of biologically relevant molecules. 相似文献
11.
Single‐handed, helical, 4,4′‐biphenylene‐bridged polybissilsesquioxane nanotubes were prepared by using the self‐assemblies of a pair of chiral low‐molecular‐weight gelators as templates. Single‐handed, helical, carbon/silica nanotubes were obtained after carbonization of the self‐assemblies, and single‐handed helical carbonaceous nanotubes were then obtained by removal of silica with aqueous HF. Samples were characterized by using field‐emission SEM, TEM, X‐ray diffraction, thermogravimetric analysis, Raman spectroscopy, and circular dichroism. The polysilsesquioxane and carbonaceous structures exhibited optical activity. The walls of the carbon/silica and carbonaceous nanotubes were predominantly amorphous carbon. The surface area of the left‐handed, helical, carbonaceous nanotubes was 1439 m2 g?1, and such materials have potential applications as catalyst supports, chirality sensors, supercapacitor electrodes, and adsorbents. 相似文献
12.
《中国化学》2018,36(5):399-405
A silver‐catalyzed three‐component coupling reaction of carbon dioxide, amines and α‐diazoesters has been developed for the first time. The novel reaction provides an efficient and practical methodology for the synthesis of a wide range of new α‐carbamoyloxy esters, which are difficult to prepare by existing methods. The advantages of the method include the use of readily available starting materials, simple catalytic system, good atom economy and high functional group tolerance. 相似文献
13.
Aggregation‐induced emission luminogens (AIEgens) are a new class of luminophors, which are non‐emissive in solution, but emit intensively upon aggregation. By properly designing the chemical structures of the AIEgens, their aggregation process can be tuned towards a desired direction to give diverse novel luminescent architectures of micelles, rods, and helical fibers. AIEgens represent a kind of promising building block for the fabrication of luminescent micro/nanostructures with controllable morphologies. In this review, we describe our recent work in this research area, focusing on the molecular design, circularly polarized luminescence properties, and helical self‐assembly behavior of AIEgens. 相似文献
14.
Tuning the Chirality of Block Copolymers: From Twisted Morphologies to Nanospheres by Self‐Assembly 下载免费PDF全文
Silvia Suárez‐Suárez Prof. Gabino A. Carriedo Dr. Alejandro Presa Soto 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(40):14129-14139
New advances into the chirality effect in the self‐assembly of block copolymers (BCPs) have been achieved by tuning the helicity of the chiral‐core‐forming blocks. The chiral BCPs {[N?P(R)‐O2C20H12]200?x[N?P(OC5H4N)2]x}‐b‐ [N?PMePh]50 ((R)‐O2C20H12=(R)‐1,1′‐binaphthyl‐2,2′‐dioxy, OC5H4N=4‐pyridinoxy (OPy); x=10, 30, 60, 100 for 3 a – d , respectively), in which the [N?P(OPy)2] units are randomly distributed within the chiral block, have been synthesised. The chiroptical properties of the BCPs ([α]D vs. T and CD) demonstrated that the helicity of the BCP chains may be simply controlled by the relative proportion of the chiral and achiral (i.e., [N?P(R)‐O2C20H12] and [N?P(OPy)2], respectively) units. Thus, although 3 a only contained only 5 % [N?P(OPy)2] units and exhibited a preferential helical sense, 3 d with 50 % of this unit adopted non‐preferred helical conformations. This gradual variation of the helicity allowed us to examine the chirality effect on the self‐assembly of chiral and helical BCPs (i.e., 3 a – c ) and chiral but non‐helical BCPs (i.e., 3 d ). The very significant influence of the helicity on the self‐assembly of these materials resulted in a variety of morphologies that extend from helical nanostructures to pearl‐necklace aggregates and nanospheres (i.e., 3 b and 3 d , respectively). We also demonstrate that the presence of pyridine moieties in BCPs 3 a – d allows specific decoration with gold nanoparticles. 相似文献
15.
Hannes Blattmann Maria Fleischer Moritz Bhr Rolf Mülhaupt 《Macromolecular rapid communications》2014,35(14):1238-1254
The catalytic chemical fixation of carbon dioxide by carbonation of oxiranes, oxetanes, and polyols represents a very versatile green chemistry route to environmentally benign di‐ and polyfunctional cyclic carbonates as intermediates for the formation of non‐isocyanate polyurethane (NIPU). Two synthetic pathways lead to NIPU thermoplastics and thermosets: i) polycondensation of diacarbamates or acyclic dicarbonates with diols or diamines, respectively, and ii) polyaddition by ring‐opening polymerization of di‐ and polyfunctional cyclic carbonates with di‐ and polyamines. The absence of hazardous and highly moisture‐sensitive isocyanates as intermediates eliminates the need for special safety precautions, drying and handling procedures. Incorporated into polymer backbones and side chains, carbonate groups enable facile tailoring of a great variety of urethane‐functional polymers. As compared with conventional polyurethanes, ring‐opening polymerization of polyfunctional cyclic carbonates affords polyhydroxyurethanes with unconventional architectures including NIPUs containing carbohydrate segments. NIPU/epoxy hybrid coatings can be applied on wet surfaces and exhibit improved adhesion, thermal stability and wear resistance. Combining chemical with biological carbon dioxide fixation affords 100% bio‐based NIPUs derived from plant oils, terpenes, carbohydrates, and bio polyols. Biocompatible and biodegradable NIPU as well as NIPU biocomposites hold great promise for biomedical applications.
16.
Qi Hu Zhen Han Xiaodeng Wang Guomin Li Ziyu Wang Xiaowan Huang Hengpan Yang Xiangzhong Ren Qianling Zhang Jianhong Liu Prof. Chuanxin He 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(43):19216-19221
Previous density-functional theory (DFT) calculations show that sub-nanometric Cu clusters (i.e., 13 atoms) favorably generate CH4 from the CO2 reduction reaction (CO2RR), but experimental evidence is lacking. Herein, a facile impregnation-calcination route towards Cu clusters, having a diameter of about 1.0 nm with about 10 atoms, was developed by double confinement of carbon defects and micropores. These Cu clusters enable high selectivity for the CO2RR with a maximum Faraday efficiency of 81.7 % for CH4. Calculations and experimental results show that the Cu clusters enhance the adsorption of *H and *CO intermediates, thus promoting generation of CH4 rather than H2 and CO. The strong interactions between the Cu clusters and defective carbon optimize the electronic structure of the Cu clusters for selectivity and stability towards generation of CH4. Provided here is the first experimental evidence that sub-nanometric Cu clusters facilitate the production of CH4 from the CO2RR. 相似文献
17.
18.
Dr. Fátima Aparicio Dr. Emilio Matesanz Prof. Dr. Luis Sánchez 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(45):14599-14603
The twisting of supramolecular aggregates formed from simple linear bis(benzamides) has been investigated. The antiparallel arrangement of the amide functional groups controls the generation of twisted supramolecular structures. The results presented herein could contribute to elaborate predictive tools applicable in the generation of chiral supramolecular structures. 相似文献
19.
《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(1):57-68
A diverse range of dinuclear double‐stranded helicates in which the ligand strand is built up by using hydrogen‐bonding has been synthesized. The helicates, formulated as [Co2(L)2(L‐H)2X2], readily self‐assemble from a mixture of a suitable pyridine–alcohol compound (L; for example, 6‐methylpyridine‐2‐methanol, 1 ), and a CoX2 salt in the presence of base. Nine such helicates have been characterized by X‐ray crystallography. For helicates derived from the same pyridine–alcohol precursor, a remarkable regularity was found for both the molecular structure and the crystal packing arrangements, regardless of the nature of the ancillary ligand (X). A notable exception was observed in the solid‐state structure of [Co2( 1 )2( 1 ‐H)2(NCS)2] for which intermolecular nonbonded contacts between the sulfur atoms (S???S=3.21 Å) lead to the formation of 1D chains. Helicates derived from (R)‐6‐methylpyridine‐2‐methanol ( 2 ) are soluble in solvents such as CH3CN and CH2Cl2, and their self‐assembly could be monitored in solution by 1H NMR, UV/Vis, and CD titrations. No intermediate complexes were observed to form in a significant concentration at any point throughout these titrations. The global thermodynamic stability constant of [Co2( 2 )2( 2 ‐H)2(NO3)2] was calculated from spectrophotometric data to be logβ=8.9(8). The stereoisomerism of these helicates was studied in some detail and the self‐assembly process was found to be highly stereoselective. The chirality of the ligand precursors can control the absolute configuration of the metal centers and thus the overall helicity of the dinuclear assemblies. Furthermore, the enantiomers of rac‐6‐methylpyridine‐2‐methanol ( 3 ) undergo a self‐recognition process to form exclusively homochiral helicates in which the four pyridine–alcohol units possess the same chirality. 相似文献