首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A rapid and sensitive LC–MS/MS method with good accuracy and precision was developed and validated for the pharmacokinetic study of quercetin‐3‐O‐β‐d ‐glucopyranosyl‐7‐O‐β‐d ‐gentiobioside (QGG) in Sprague–Dawley rats. Plasma samples were simply precipitated by methanol and then analyzed by LC–MS/MS. A Venusil® ASB C18 column (2.1 × 50 mm, i.d. 5 μm) was used for separation, with methanol–water (50:50, v/v) as the mobile phase at a flow rate of 300 μL/min. The optimized mass transition ion‐pairs (m/z) for quantitation were 787.3/301.3 for QGG, and 725.3/293.3 for internal standard. The linear range was 7.32–1830 ng/mL with an average correlation coefficient of 0.9992, and the limit of quantification was 7.32 ng/mL. The intra‐ and inter‐day precision and accuracy were less than ±15%. At low, medium and high quality control concentrations, the recovery and matrix effect of the analyte and IS were in the range of 89.06–92.43 and 88.58–97.62%, respectively. The method was applied for the pharmacokinetic study of QGG in Sprague–Dawley rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

4.
β‐Asarone (BAS), a phenylpropanoid from Acorus calamus Linn., has shown biological effects in the management of cognitive impairment conditions such as Alzheimer's disease. The present paper describes a selective and sensitive liquid chromatography–tandem mass spectrometric method (HPLC‐MS/MS) using electrospray ionization source (ESI) for quantification of BAS in rat plasma. Briefly, the plasma samples were pre‐treated using a simple solid‐phase extraction method. The separation of BAS and the internal standard, caffeine, was achieved on an Agilent Zorbax XDB C18 column (50 × 2.1 mm i.d., 5 µm) using 0.2 mL/min isocratic mobile phase flow. The detection was performed using an Applied Biosystems Hybrid Q‐Trap API 2000 mass spectrometer equipped with an ESI source operated in positive mode. Also, the developed bioanalytical method was validated as per the US FDA bioanalytical guidelines over the concentration range of 9.79–4892.50 ng/mL (r2 ≥ 0.9951) for BAS from rat plasma. The mean percentage recovery (n = 3) for the low, middle and high quality control samples was 86.92 ± 3.89, 85.30 ± 1.09 and 87.24 ± 4.03%, respectively. The applicability of the validated HPLC‐MS/MS method was demonstrated by successful measurement of BAS from plasma following oral administration of Acorus calamus rhizome extracts to three female albino Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A high‐throughput, sensitive, and rugged liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the rapid quantitation of β ‐hydroxy‐β ‐methylbutyrate (HMB) in human plasma has been developed and validated for routine use. The method uses 100 μL of plasma sample and employs protein precipitation with 0.1% formic acid in methanol for the extraction of HMB from plasma. Sample extracts were analyzed using LC–MS/MS technique under negative mode electrospray ionization conditions. A 13C–labeled stable isotope internal standard was used to achieve accurate quantitation. Multiday validation was conducted for precision, accuracy, linearity, selectivity, matrix effect, dilution integrity (2×), extraction recovery, freeze–thaw sample stability (three cycles), benchtop sample stability (6 h and 50 min), autosampler stability (27 h) and frozen storage sample stability (146 days). Linearity was demonstrated between 10 and 500 ng/mL. Inter‐day accuracies and coefficients of variation (CV) were 91.2–98.1 and 3.7–7.8%, respectively. The validated method was proven to be rugged for routine use to quantify endogenous levels of HMB in human plasma obtained from healthy volunteers.  相似文献   

6.
This study is the first to detail the development and validation of a rapid, sensitive and specific LC‐ESI‐MS/MS method for the determination of eriodictyol‐8‐C‐β‐d ‐glucopyranoside (EG) in rat plasma. A simple protein precipitation method was used for plasma sample preparation. Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm) using a step gradient program with the mobile phase of 0.1% formic acid aqueous solution and acetonitrile with 0.1% formic acid. EG and the internal standard (IS) were detected using an electrospray negative ionization mass spectrometry in the multiple reaction monitoring mode. This method demonstrated good linearity and did not show any endogenous interference with the active compound and IS peaks. The lower limit of quantification of EG was 0.20 ng/mL in 50 μL rat plasma. The average recoveries of EG and IS from rat plasma were both above 80%. The inter‐day precisions (relative standard deviation) of EG determined over 5 days were all within 15%. The present method was successfully applied to a quantification and bioavailability study of EG in rats after intravenous and oral administration. The oral absolute bioavailability of EG in rats was estimated to be 7.71 ± 1.52%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, a sensitive, simple and reliable method for the quantification of docetaxel in rat plasma was developed and validated using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The plasma samples were prepared by protein precipitation, and paclitaxel was used as an internal standard (IS). Chromatographic separation was achieved using a Gemini C18 column (2.0 × 150 mm, 5 µm) with a mobile phase consisting of 0.1% formic acid–acetonitrile (30:70, v/v). The precursor–product ion pairs used for multiple reaction monitoring were m/z 808.5 → 527.5 (docetaxel) and m/z 854.2 → 286.5 (IS, paclitaxel). A calibration curve for docetaxel was constructed over the range 1–1000 ng/mL. The developed method was specific, precise and accurate, and no matrix effect was observed. The validated method was applied in a comparative pharmacokinetic study in which two docetaxel formulations, SID530, a new parenteral formulation of docetaxel with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), and Taxotere, were administered to rats at a dose of 5 mg/kg. For SID530 and Taxotere, the mean C0 values were 1494 and 1818 ng/mL, respectively, and the AUClast values were 837 and 755 h ng/mL, respectively. These two formulations did not show any statistical differences with regard to the pharmacokinetic parameters, thus establishing that the SID530 and Taxotere products are pharmacokinetically comparable in male rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
γ‐Tocotrienol has attracted much attention owing to its multiple health benefits. This study developed and validated a simple, specific, sensitive and reliable LC/MS/MS method to analyze γ‐tocotrienol in rat plasma. Plasma samples (50 μL) were extracted with internal standard solution (25 ng/mL of itraconazole) in acetonitrile (200 μL) with an average recovery of 44.7% and an average matrix effect of ?2.9%. The separation of γ‐tocotrienol and internal standard from the plasma components was achieved with a Waters XTerra® MS C18 column with acetonitrile–water as mobile phase. Analysis was performed under positive ionization electrospray mass spectrometer via the multiple reaction monitoring. The standard curve was linear over a concentration range of 10–1000 ng/mL with correlation coefficient values >0.997. The method was validated with intra‐ and inter‐day accuracy (relative error) ranging from 1.79 to 9.17% and from 2.16 to 9.66%, respectively, and precision (coefficient of variation) ranged from 1.94 to 9.25% and from 2.37 to 10.08%, respectively. Short‐term stability, freeze–thaw stability and the processed sample stability tests were performed. This method was further applied to analyze γ‐tocotrienol plasma concentrations in rats at various time points after administration of a 2 mg/kg single intravenous dose, and a pharmacokinetic profile was successfully obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

11.
A sensitive, accurate and precise liquid chromatography–tandem mass spectrometry method was developed for the determination of (?)‐satropane (3α‐paramethyl‐benzenesulfonyloxy‐6β‐acetoxy‐tropane) in rabbit aqueous humor. Since (?)‐satropane may be absorbed from the aqueous humour with resultant systemic side effects, the LC‐MS/MS method was also evaluated for its applicability in analyzing plasma samples containing this compound. (?)‐Satropane and phentolamine (the internal standard, represented as IS) were detected by multiple reaction monitoring using the transitions m/z 354–182 and 282–212, respectively. The calibration curve was linear over the ranges 2–500 and 5–1000 ng/mL, and the values of the lower limit of quantification were 2 and 5 ng/mL for the microdialysis dialysate and rat plasma samples, respectively. The intra‐day and inter‐day precision and accuracy were better than 8.6 and 6.00%, respectively, in both matrices investigated. The absolute recovery of the plasma samples was more than 76.30%. The average matrix effects of (?)‐satropane were 91.72 and 83.05% in the microdialysis dialysate and plasma samples, respectively. The validated method was successfully applied to analyze (?)‐satropane in microdialysis dialysate and rat plasma samples, and this assay has been used to quantify (‐)‐satropane in the pharmacokinetic and toxicokinetic studies in our laboratory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Atenolol, nadolol, metoprolol, bisoprolol and betaxolol were simultaneously determined in groundwater samples by large‐volume injection coupled‐column reversed‐phase liquid chromatography with fluorescence detection (LVI‐LC‐LC‐FD) and liquid chromatography‐time‐of‐flight mass spectrometry (LC‐TOF‐MS). The LVI‐LC‐LC‐FD method combines analyte isolation, preconcentration and determination into a single step. Significant reductions in costs for sample pre‐treatment (solvent and solid phases for clean up) and method development times are also achieved. Using LC‐TOF‐MS, accurate mass measurements within 3 ppm error were obtained for all of the β‐blockers studied. Empirical formula information can be obtained by this method, allowing the unequivocal identification of the target compounds in the samples. To increase the sensitivity, a solid‐phase extraction step with Oasis MCX cartridge was carried out yielding recoveries of 79–114% (n=5) with RSD 2–7% for the LC‐TOF‐MS method. SPE gives a high purification of β‐blockers compared with the existing methods. A 100% methanol wash was allowed for these compounds with no loss of analytes. Limit of quantification was 1–7 ng/L for LVI‐LC‐LC‐FD and 0.25–5 ng/L for LC‐TOF‐MS. As a result of selective extraction and effective removal of coextractives, no matrix effect was observed in LVI‐LC‐LC‐FD and LC‐TOF‐MS analyses. The methods were applied to detect and quantify β‐blockers in groundwater samples of Almería (Spain).  相似文献   

13.
A novel, rapid and sensitive LC‐MS/MS method for the determination of 1‐O‐Acetylbritannilactone (ABL), a sesquiterpene lactone abundant in Inula britannica, was developed and validated using heteroclitin D as internal standard. Separation was achieved on a reversed phase Hypersil Gold C18 column (50 × 4.6 mm, i.d., 3.0 µm) using isocratic elution with methanol–5 mM ammonium acetate buffer aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min. Calibration curve was linear (r > 0.99) in a concentration range of 1.60–800 ng/mL with the lower limit of quantification of 1.60 ng/mL. Intra‐ and inter‐day accuracy and precision were validated by relative error (RE) and relative standard deviation (RSD) values, respectively, which were both less than ±15%. The validated method has been successfully applied to a pharmacokinetic study of ABL in rats. The elimination half‐lives were 0.412 ± 0.068, 0.415 ± 0.092 and 0.453 ± 0.071 h after a single intravenous administration of 0.14, 0.42, and 1.26 mg/kg ABL, respectively. The area under the plasma concentration–time curve from time zero to the last quantifiable time point and from time zero to infinity and the plasma concentrations at 2 min were linearly related to the doses tested. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and reliable liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed to determine cyanidin‐3‐O‐glucoside (Cy‐3G) in normal and streptozotocin‐induced diabetic rat plasma. Chromatographic separation was carried out on a Zorbax SB‐C18 (50 × 4.6 mm, 5 μm) column and mass spectrometric analysis was performed using a Thermo Finnigan TSQ Quantum Ultra triple‐quadrupole mass spectrometer coupled with an ESI source in the negative ion mode. Selected reaction monitoring mode was applied for quantification using target fragment ions m/z 447.3 → 285.2 for Cy‐3G and m/z 463.0 → 300.1 for quercetin‐3‐O‐glucoside (internal standard). The calibration curve was linear over the range 3.00–2700 ng/mL (r2 ≥ 0.99) with the lower limit of quantitation at 3.00 ng/mL. Intra‐ and inter‐day precision was <14.5% and mean accuracy was from −11.5 to 13.6%. Stability testing showed that Cy‐3G remained stable during the whole analytical procedure. After validation, the assay was successfully used to support a preclinical pharmacokinetic comparison of Cy‐3G between normal and diabetic rats. Results indicated that diabetes mellitus significantly altered the in vivo pharmacokinetic characteristics of Cy‐3G after oral administration in rats.  相似文献   

15.
A sensitive and reliable ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method was developed and validated for simultaneous determination of l ‐tetrahydropalmatine (l ‐THP) and its active metabolites l ‐isocorypalmine (l ‐ICP) and L ‐corydalmine (l ‐CD) in rat plasma. The analytes were extracted by liquid–liquid extraction and separated on a Bonshell ASB C18 column (2.1 × 100 mm; 2.7 μm; Agela) using acetonitrile–formic acid aqueous as mobile phase at a flow rate of 0.2 mL/min in gradient mode. The method was validated over the concentration range of 4.00–2500 ng/mL for l ‐THP, 0.400–250 ng/mL for l ‐ICP and 1.00–625 ng/mL for l ‐CD. Intra‐ and inter‐day accuracy and precision were within the acceptable limits of <15% at all concentrations. Correlation coefficients (r ) for the calibration curves were >0.99 for all analytes. The quantitative method was successfully applied for simultaneous determination of l ‐THP and its active metabolites in a pharmacokinetic study after oral administration with l ‐THP at a dose of 15 mg/kg to rats.  相似文献   

16.
Tacrine, as a drug for treating Alzheimer's disease (AD), has low efficacy owing to its single function and serious side effects. However, tacrine‐6‐ferulic acid (T6FA), the dimer which added ferulic acid to tacrine, has been found to be a promising multifunctional drug candidate for AD and much more potent and selective on acetylcholinesterase (AChE) than tacrine. The aim of the present work was to develop and validate an LC‐MS/MS method with electrospray ionization for the quantification of T6FA in rat plasma using tacrine‐3‐ferulic acid (T3FA) as internal standard and to examine its application for pharmacokinetic study in rats. Following a single liquid–liquid extraction with ethyl acetate, chromatographic separation was achieved at 25 °C on a BDS Hypersil C18 column with a mobile phase composed of 1% formic acid and methonal (30:70, v/v) at a flow rate of 0.2 mL/min. Quantification was achieved by monitoring the selected ions at m/z 474.2 → 298.1 for T6FA and m/z 432.2 → 199.0 for T3FA. The method was validated to be rapid, specific, accurate and precise over the concentration range of 0.5–1000.0 ng/mL in rat samples. Furthermore, it was successfully applied for the pharmacokinetic measurement of T6FA with an oral administration at 40 mg/kg to rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A highly sensitive, rapid assay method has been developed and validated for the estimation of JI‐101 in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves extraction of JI‐101 and phenacetin (internal standard, IS) from rat plasma with a solid‐phase extraction process. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI‐101 and 180.1 → 110.1 for IS. Method validation and sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 5.03 ng/mL and the linearity range extended from 5.03 to 2014 ng/mL. The intra‐day and inter‐day precisions were in the ranges of 1.17–19.6 and 3.09–10.4%, respectively. This method has been applied to a pharmacokinetic study of JI‐101 in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the simultaneous determination of metoprolol (MET), α‐hydroxymetoprolol (HMT) and O‐desmethylmetoprolol (DMT) in rat plasma. The plasma samples were prepared by protein precipitation, then the separation of the analytes was performed on an Agilent HC‐C18 column (4.6 × 250 mm, 5 µm) at a flow rate of 1.0 mL/min, and post‐column splitting (1:4) was used to give optimal interface flow rates (0.2 mL/min) for MS detection; the total run time was 8.5 min. Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. The method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, matrix effect and recovery over a concentration range of 3.42–7000 ng/mL for MET, 2.05‐4200 ng/mL for HMT and 1.95‐4000 ng/mL for DMT. The analytical method was successfully applied to herb–drug interaction study of MET and breviscapine after administration of breviscapine (12.5 mg/kg) and MET (40 mg/kg). The results suggested that breviscapine have negligible effect on pharmacokinetics of MET in rats; the information may be beneficial for the application of breviscapine in combination with MET in clinical therapy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The established analytical method for determining the concentration of dantrolene sodium (Da) in rat tissues by HPLC/MS/MS technique was successfully applied to tissue distribution studies of Da in rats. Tissue homogenate samples were pretreated by protein precipitation with pre‐cooled methanol. Chromatographic separation was achieved on an Acquity HPLC column (Kromat Universil XB‐C18, 2.1 × 150 mm, 3 μm). Mass spectrometry was conducted with an electrospray ionization interface in negative ionization mode and multiple reaction monitoring was used for quantitative analysis. The results showed that Da was rapidly and widely distributed in tissues and reached the maximum concentration within 0.5 h in all tissues after oral administration of Da–hydroxypropyl‐β‐cyclodextrin (DHC). It was then metabolized by liver and finally excreted from kidney,which indicated that DHC inclusion complex has better absorption and higher oral bioavailability than Da. The results also provided evidence for the safety and effectiveness of drug clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号