首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) is an incurable neurodegenerative brain disorder that exhibits clear pathologic changes in the hippocampus. Traditional drug delivery systems are ineffective due to the existence of the blood–brain barrier (BBB). In this study, an efficient, stable, and easily constructed nanosystem (CB‐Gd‐Cy5.5) based on the cholera toxin B subunit (CB) is designed to improve the efficiency of drug delivery to the brain, especially the hippocampus. Through intranasal administration, CB‐Gd‐Cy5.5 is easily delivered to the brain without intervention by the BBB. The CB in CB‐Gd‐Cy5.5 is used for specifically combining with the monosialoganglioside GM1, which is widely found in the hippocampus. This nanosystem exhibits impressive performance in accumulating in the hippocampus. In addition, the good magnetic resonance imaging (MRI) capability of CB‐Gd‐Cy5.5 can satisfy the monitoring of AD in the different stages.  相似文献   

2.
Applying the patch-clamp technique to vacuoles from Radish we studied the effects of Cu2 on Slow Vacuolar (SV) current’s characteristic. Our results show that Cu2 in bath solution at higher concentration inhibits SV currents and the percentage of inhibition increases with increasing concentration and changes with different voltage. When at lower concentration, Cu2 significantly promotes the SV currents and the promotion ratio decrease with increasing voltage. At the same time, the time constants of activation become lesser after adding Cu2 . These results show that there may be some Cu2 binding sites on SV channels and binding to which can change SV current’s characteristic.  相似文献   

3.
4.
膜片钳法研究镁离子对萝卜液泡膜SV通道的影响   总被引:1,自引:0,他引:1  
张朝峰  杨频  薛绍武 《化学学报》2005,63(12):1147-1150
用膜片钳全液泡记录方式研究了Mg2+对萝卜(Raphanus sativus L.)液泡膜上SV通道电流的影响. 结果表明: 用EGTA配位Ca2+后, 胞质Mg2+不能够代替Ca2+来激活SV通道; 外液中不同浓度的Mg2+对通道电流有抑制作用, 并且呈一定的浓度依赖性, 用Hill方程拟合浓度依赖性曲线, 得抑制常数Ki=(1.94±0.11) mmol/L, 而内液中的Mg2+不影响通道电流. 这一结果为进一步研究镁对植物生理活动的影响从通道水平提供了重要依据.  相似文献   

5.
The ring‐opening polymerization of ε‐caprolactone (ε‐CL) and δ‐valerolactone (δ‐VL) using nine catalytic systems consisting of a combination of three C2v zirconocene complexes and three borate cocatalysts is discussed. The polymerizations proceed in a well‐controlled manner, producing polymers with relatively high molecular weights and narrow molecular weight distributions. Kinetic experiments of the polymerization of ε‐CL with the catalytic system Cp2ZrMe2/B(C6F5)3 (1) showed a linear dependence between polymerization yield and molecular weight with time, as well as between the molecular weight with the molar ratio of the monomer over the catalyst [ε‐CL]/[Zr], indicating sufficient control of the polymerization reaction. The catalytic system (1) was utilized for the synthesis of well‐defined block copolymers of MMA with ε‐CL and δ‐VL. All samples were characterized by size exclusion chromatography, nuclear magnetic resonance, and differential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3524–3537, 2007  相似文献   

6.
A ladder polysilsesquioxanes with side chain of dibenzothiophene groups (BS‐LPSQ) was successfully synthesized. The ladder structure of BS‐LPSQ was characterized by MALDI‐TOF MS, XRD, and 1H NMR spectroscopy. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and spectroscopic analyses revealed that the BS‐LPSQ has good film‐forming ability, high thermal and morphological stability, and good miscibility to the dopant iridium bis(4,6‐difluorophenyl)pyridinato‐N,C2‐picolinate (FIrpic), high triplet energy, and a wide bandgap. In addition, compared with the ringed polysiloxane BS‐PSQ phosphorescent host material reported previously, the ladder structure of BS‐LPSQ has not only a higher thermal resistance, but also could prevent molecular aggregation and effectively avoid quenching of fluorescence. Thus, the BS‐LPSQ may be used as a better host for the blue‐light‐emitting iridium complex FIrpic. The performance of the electrophosphorescent device, based on the ladder BS‐LPSQ as the active layer, is superior to that of ringed BS‐PSQ and any other polyhedral oligomeric silsesquioxane (POSS)‐based or polymer host materials.  相似文献   

7.
This article describes the structure and electrical performance of positive‐temperature‐coefficient/negative‐temperature‐coefficient (PTC/NTC) effects of the following three‐component blends: poly(4‐methyl pentene‐1)/ultra‐high molecular weight polyethylene/carbon black (TPX/UHMWPE/CB), poly(4‐methyl pentene‐1)/crosslinked‐ultra‐high molecular weight polyethylene/carbon black (TPX/XL‐UHMWPE/CB), and γ‐irradiated, compression‐molded plaques of these blends. CB particles are preferentially attracted to the UHMWPE and XL‐UHMWPE particles, which constitute the dispersed phase within the TPX matrix, but practically cannot or can only very slightly penetrate them because of their extremely high viscosity. Thus, CB particles initially form conductive networks on the UHMWPE phase; this is followed by distribution in the TPX matrix, electrically connecting the CB‐covered UHMWPE particles. This unusual CB distribution results in a reduced percolation threshold of all blends. A double‐PTC effect is exhibited by the XL‐UHMWPE‐containing samples. Irradiation of compression‐molded plaques improves their thermoelectric behavior by amplifying the PTC effect and reducing the NTC effect. A schematic model of the double‐PTC effect is suggested, describing the morphological changes of 70TPX/30XL‐UHMWPE/CB blends at different stages of heating with respect to their thermoelectric behavior. Irradiation of TPX/UHMWPE/CB plaques converts these systems into high‐intensity PTC materials free of the NTC effect. © 2001 John Wiley & Sons, Inc. J Polym Sci B Part B: Polym Phys 39: 1415–1428, 2001  相似文献   

8.
We present a theoretical development of the equations required to perform an analytic geometry optimization of a molecular system using the XYG3 type of doubly hybrid (xDH) functionals. In contrast to the well‐established B2PLYP type of DH functionals, the energy expressions in the xDH functionals are constructed by using density and orbital information from another standard Kohn–Sham (KS) functional (e.g., B3LYP) for doing the self‐consistent field calculations. Thus, the xDH functionals are nonvariational in both the hybrid density functional part and the second‐order perturbation part, each of which requires formally to solve a coupled‐perturbed KS equation. An implementation is reported here which combines the two parts by defining a total Lagrangian such that only a single set of the Z‐vector equations need to be solved. The computational cost with our implementation is of the same order as those for the conventional Møller–Plesset theory to the second order (MP2) and B2PLYP. Systematic test calculations are provided for covalently bonded molecules as well as compounds involving the intramolecular nonbonded interactions for the main group elements. Satisfactory performance of the xDH functionals demonstrates that the extra computer time on top of the conventional KS procedure is well‐invested, in particular, when the standard KS functionals and MP2 as well, are problematic. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The ring‐opening polymerization of ?‐caprolactone (?‐CL) catalyzed by iodine (I2) was studied. The formation of a charge‐transfer complex (CTC) among triiodide, I, and ?‐CL was confirmed with ultraviolet–visible spectroscopy. The monomer ?‐CL was polymerized in bulk using I2 as a catalyst to form the polyester having apparent weight‐average molecular weights of 35,900 and 45,500 at polymerization temperatures of 25 and 70 °C, respectively. The reactivity of both, ?‐CL monomer and ?‐CL:I2 CTC, was interpreted by means of the potential energy surfaces determined by semiempirical computations (MNDO‐d). The results suggest that the formation of the ?‐CL:I2 CTC leads to the ring opening of the ?‐CL structure with the lactone protonation and the formation of a highly polarized polymerization precursor (?‐CL)+. The band gaps approximated from an extrapolation of the oligomeric polycaprolactone (PCL) structures were computed. With semiempirical quantum chemical calculations, geometries and charge distributions of the protonated polymerization precursor (?‐CL)+ were obtained. The calculated band gap (highest occupied molecular orbit/lowest unoccupied molecular orbit differences) agrees with the experiment. The analysis of the oligomeric PCL isosurfaces indicate the existence of a weakly lone pair character of the C?O and C? O bonds suggesting a ?‐CL ring‐opening specificity. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 714–722, 2002  相似文献   

10.
This article reports on the synthesis of a new pH‐sensitive amphiphilic A2B mikto‐arm star‐shaped aliphatic copolyester [with A = poly(ε‐caprolactone) and B = tertiary amine‐bearing poly(ε‐caprolactone)] with two hydrophobic arms and one hydrophilic arm when protonated at pH = 5.5. First, the ring‐opening polymerization of ε‐caprolactone (εCL) was initiated by an aliphatic diol substituted by an alkyne. The copper(I) catalyzed azide‐alkyne cycloaddition (CuAAC) was use to convert the alkyne into a hydroxyl group prone to initiate the ring‐opening copolymerization of γ‐bromo‐ε‐caprolactone (γBrεCL) and εCL. After the substitution of the bromide atoms into azide functions, the N,N‐dimethylprop‐2‐yn‐1‐amine was grafted onto the azide bearing PCL arm by CuAAC, with the purpose to make the B arm hydrophilic at low pH. The precursors of the A2B copolymers were characterized by 1H NMR, SEC, and MALDI‐TOF. As expected, the A2B copolyester was soluble into water at pH = 5. The formation of polymersomes in water at pH 5 was assessed by DLS and TEM analyses. The effects of the architecture and the molecular weight of the A2B copolymers on the formation of polymersomes were investigated. Moreover, the versatility of our approach was demonstrated by the synthesis of an AB2 star‐shaped copolyester. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
The concept of lactonization-mediated and related glycosylations led us to develop new methods of glycosylation such as the 2'-carboxybenzyl (CB) glycoside method, the glycosyl pentenoate/phenylselenyl trifluoromethanesulfonate (PhSeOTf) method, and the glycosyl aryl phthalate method. Highly stereoselective beta-mannopyranosylations were achieved by employing the CB glycoside and the glycosyl pentenoate/PhSeOTf methods. The CB glycoside method was also utilized for stereoselective 2-deoxyglycosylation, beta-arabinofuranosylation, and alpha-galactofuranosylation. In addition, these lactonization-mediated methods of glycosylation were employed for the synthesis of complex oligosaccharides. In particular, the CB glycoside method was successfully applied to the synthesis of repeating oligosaccharide subunits of the O-polysaccharide of the lipopolysaccharide from Danish Helicobacter pylori strains and Escherichia coli 077, the synthesis of oligoarabinofuranosides in mycobacterial cell walls, and the total synthesis of antineoplastic agelagalastatin.  相似文献   

12.
The adsorption and decomposition of HMX and CL‐20 molecules on the Al(111) surface were investigated by the generalized gradient approximation of density functional theory. The calculations employed a supercell (6 × 6 × 3) slab model and three‐dimensional periodic boundary conditions. The strong attractive forces between HMX (or CL‐20) molecule and Al atoms induce the breaking of N‐O and N‐N bonds in nitro group. Subsequently, the dissociated oxygen atoms, NO2 groups, and radical fragments of HMX or CL‐20 oxidize the Al surface. The largest adsorption energy is ?1792.7 kJ/mol in B1, where CL‐20 decomposes into four O atoms and a CL‐20 fragment. With the number of the radical species in adsorption configurations increases, the corresponding adsorption energy increases greatly. We also investigated the decomposition mechanism of HMX and CL‐20 molecules on the Al(111) surface. The activation energies (E a) for the dissociations A2, A3, B1, and B6 are 31.2, 47.9, 75.5, and 75.9 kJ/mol, respectively. Although CL‐20 is more sensitive than HMX in its gaseous state, the E a of CL‐20 is higher than that of HMX when they adsorb and decompose on the Al(111) surface, which indicates that the HMX is even easier to decompose on Al(111) surface as compared with CL‐20. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A supramolecular strategy for detecting specific proteins in complex media by using hyperpolarized 129Xe NMR is reported. A cucurbit[6]uril (CB[6])‐based molecular relay was programmed for three sequential equilibrium conditions by designing a two‐faced guest (TFG) that initially binds CB[6] and blocks the CB[6]–Xe interaction. The protein analyte recruits the TFG and frees CB[6] for Xe binding. TFGs containing CB[6]‐ and carbonic anhydrase II (CAII)‐binding domains were synthesized in one or two steps. X‐ray crystallography confirmed TFG binding to Zn2+ in the deep CAII active‐site cleft, which precludes simultaneous CB[6] binding. The molecular relay was reprogrammed to detect avidin by using a different TFG. Finally, Xe binding by CB[6] was detected in buffer and in E. coli cultures expressing CAII through ultrasensitive 129Xe NMR spectroscopy.  相似文献   

14.
Mosquito control protein from Bacillus thuringiensis gets inactivated with exposure to sunlight. To address this issue, the potential of synthetic and natural dye was investigated as sunlight protectants. Bt SV2 in absence of dyes when exposed to sunlight showed reduced effectiveness against the fourth instars of mosquito larvae. Whereas acriflavin, congo red and violacein were able to maintain 86.4%, 91.6% and 82.2% mosquito larvicidal efficacy of Bt SV2 against IVth instars larvae of Anopheles stephensi Meigen after exposure to sunlight. Similarly, beetroot dye, acriflavin, congo red and violacein maintained 98.4%, 97.1%, 90.8% and 70.7% larvicidal activities against Aedes aegypti Linnaeus after sunlight exposure. Prodigiosin was found to be the best photo-protectant by simultaneously protecting and enhancing Bt activity by 6.16% and 22.16% against A. stephensi and A. aegypti, respectively. Combination of dyes with Bt formulations can be a good strategy for mosquito control programmes in tropical and sub-tropical regions.  相似文献   

15.
A new method based on high‐performance liquid chromatography (HPLC) coupled with on‐line gold nanoparticle‐catalyzed luminol chemiluminescence (CL) detection was developed for the simultaneous quantitation of catecholamines in rat brain. In the present CL system, gold nanoparticles were produced by the on‐line reaction of H2O2, NaHCO3?Na2CO3 (buffer solution of luminol) and HAuCl4. Norepinephrine (NE), epinephrine (EP) and dopamine (DA) could strongly enhance the CL signal of the on‐line gold nanoparticle‐catalyzed luminol system. The UV?visible absorption spectra and transmission electron microscopy studies were carried out, and the CL enhancement mechanism was proposed. Catecholamines promoted the on‐line formation of more gold nanoparticles, which better catalyzed the luminol–H2O2 CL reaction. The good separation of NE, EP and DA was achieved with isocratic elution using a mixture of methanol and 0.2% aqueous phosphoric acid (5:95, v/v) within 8.5 min. Under the optimized conditions, the detection limits, defined as a signal‐to‐noise ratio of 3, were in the range of 1.32–1.90 ng/mL, corresponding to 26.4?38.0 pg for 20 μL sample injection. The recoveries of catecholamines added to rat brain sample were >94.6%, with the precisions <5.5%. The validated HPLC?CL method was successfully applied to determine NE and DA in rat brain without prior sample purification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro‐heterogeneity) and evaluate the molar site occupancy (macro‐heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N‐glycans was chemically synthesised by solid‐phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N‐acetylglucosamine‐linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well‐defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI‐IT, ESI‐Q‐TOF, MALDI‐TOF, ESI/MALDI‐FT‐ICR‐MS). Depending on the ion source/mass analyser, glycopeptides carrying complex‐type N‐glycans exhibited clearly lower signal strengths (10–50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano‐ESI and medium‐pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro‐heterogeneity and macro‐heterogeneity by label‐free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
18.
To avoid organometallic catalysts in the synthesis of poly(1,5‐dioxepan‐2‐one), the enzymatic ring‐opening polymerization of 1,5‐dioxepan‐2‐one (DXO) was performed with lipase CA (derived from Candida antarctica) as a biocatalyst. A linear relationship between the number‐average molecular weight and monomer conversion was observed, and this suggested that the product molecular weight could be controlled by the stoichiometry of the reactants. The monomer consumption followed a first‐order rate law with respect to the monomer, and no chain termination occurred. Water acted as a chain initiator, but it could cause polymer hydrolysis when it exceeded an optimum level. An initial activation via the heating of the enzyme was sufficient to start the polymerization, as the monomer conversion occurred when samples were left at room temperature after an initial heating at 60 °C. A high lipase content led to a high monomer conversion as well as a high molecular weight. An increase in the monomer conversion and molecular weight was observed when the polymerization temperature was increased from 40 to 80 °C. A further increase in the polymerization temperature led to a decrease in the monomer conversion and molecular weight because of the denaturation of the enzyme at elevated temperatures. The polymerization behavior of DXO under lipase CA catalysis was compared with that of ε‐caprolactone (CL). The rate of monomer conversion of DXO was much faster than that of CL, and this may have been due to differences in their specificity toward lipase CA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4206–4216, 2005  相似文献   

19.
The syndiotactic polystyrene (sPS) δ form was crystallized from mixtures with different compositions of p‐chlorotoluene–chlorobenzene (p‐CT–CB) and p‐chlorotoluene–1,1,2‐trichloroethane (p‐CT–TCE). The presence of the δ form and TTGG helical conformation was confirmed by Fourier transform infrared and wide‐angle X‐ray diffraction (WAXD) analyses. In sPS/p‐CT–CB and sPS/p‐CT–TCE δ‐form membranes, the relative absorbance (RA) of the p‐chlorotoluene (p‐CT) solvent peak was very high even at very low concentrations of p‐CT in comparison with the RA of higher concentrations of chlorobenzene (CB) or 1,1,2‐trichloroethane (TCE) in the mixtures. However, the RAs of both CB and TCE solvent peaks decreased with decreasing concentrations of CB and TCE in the mixtures. A negligible decrease in the RA of the TTGG helical content was observed with a decreasing concentration of CB or TCE. The WAXD results showed that the 2θ peak positions of the [010] and [ 10] planes of the sPS/p‐CT–CB and sPS/p‐CT–TCE δ‐form membranes appeared in the same position and were almost equal to those of the sPS–p‐CT δ‐form membrane. The mesophases of the sPS–p‐CT [p‐CT (A‐M)] and sPS–TCE [TCE (A‐M)] membranes were used for the sorption studies with different concentrations of various solvents. The sorption amount of aromatic solvents by both p‐CT (A‐M) and TCE (A‐M) mesophase membranes was higher than that of aliphatic solvents, regardless of the size, shape, and nature of the molecular cavity. The 2θ peak of the [010] plane of the sPS membranes slowly approached the original δ‐form value when the sPS mesophase membranes were immersed in various solvents of different concentrations for 48 h. The shifting of the 2θ peak of the [010] plane to the original δ form depended on the nature and concentration of the immersion solvents. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2380–2387, 2005  相似文献   

20.
Applying the patch-clamp technique to vacuoles from Radish we studied the effects of Cu2+ on Slow Vaculolar (SV) current’s characteristic. Our results show that Cu2+ in bath solution at higher concentration inhibits SV currents and the percentage of inhibition increases with increasing concentration and changes with different voltage. When at lower concentration, Cu2+ significantly promotes the SV currents and the promotion ratio decrease with increasing voltage. At the same time, the time constants of activation become lesser after adding Cu2+. These results show that there may be some Cu2+ binding sites on SV channels and binding to which can change SV current’s characteristic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号