首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery.

  相似文献   


2.
Layer-by-layer fluorescent conjugated polyelectrolyte films have been studied. The photoluminescence of conjugate polyelectrolytes was observed to be highly tunable during this film assembly process. Efficient photoinduced electron transfer from thus prepared highly luminescent film to a natural electron-transfer protein cytochrome c has also been observed.  相似文献   

3.
4.
Summary: The multilayers of polycation‐based non‐viral DNA nanoparticles and biodegradable poly(L ‐glutamic acid) (PGA) were constructed by a layer‐by‐layer (LbL) technique. Poly(ethyleneimine) (PEI) was used to condense DNA to develop non‐viral DNA nanoparticles. AFM, UV‐visible spectrometry, and TEM measurements revealed that the PEI‐DNA nanoparticles were successfully incorporated into the multilayers. The well‐structured, easily processed multilayers with the non‐viral DNA nanoparticles may provide a novel approach to precisely control the delivery of DNA, which may have great potential for gene therapy applications in tissue engineering, medical implants, etc.

A TEM image of the cross section of a (PGA/PEI‐DNA nanoparticle)20 multilayer.  相似文献   


5.
《中国化学》2018,36(1):51-54
Antireflection surfaces and coatings have attracted considerable interests because they can maximize light transmittance of the substrates. In this work, zeolite antireflective (ZAR) coatings are prepared via layer‐by‐layer (LBL) assembly of MFI ‐type zeolite silicalite‐1 and polyelectrolyte. A micro‐ and macroporous hierarchical structure was obtained which contributes to the antireflective property of the zeolite coatings. The light transmittance of the coating on quartz can achieve as high as 99.3% at 650 nm. Furthermore, a superhydrophobic ZAR coating can be obtained by chemical modification with 1H,1H,2H,2H–perfluorooctyl‐triethoxysilane. This work demonstrates that zeolites are excellent candidates as high transparent superhydrophobic coatings.  相似文献   

6.
Lavender layers : A poly(p‐phenylene) anionic derivate and exfoliated Mg‐Al layered double hydroxide monolayers were assembled into ultrathin films with well‐defined blue fluorescence (see picture; the numbers indicate the number of bilayers), long‐range order, and high photostability. These films work as multiple quantum‐well structures for valence electrons.

  相似文献   


7.
Nanocomposite films [Ag/(PAH‐PSS)nPAH]m were fabricated on a silicon substrate using a time‐ and cost‐efficient spin‐assisted layer‐by‐layer (SA‐LbL) self‐assembly technique. A virtually monolayer‐like layer of self‐assembled silver nanoparticles was formed when deposition time increased to 30 min. It was found that polymer multilayers could effectively decrease the resistivity of silver nanoparticle monolayer, which was far higher than that of bulk silver metal; however, the resistivity of Ag/(PAH‐PSS)nPAH multilayer films increased along with the increasing of the number of polymer bilayers. XPS investigations showed that silver nanoparticles were partially oxidized, which might be the major cause of the high resistivity of silver nanoparticle monolayer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The detection of layer‐by‐layer self‐assembly multilayer films was carried out using low‐temperature plasma (LTP) mass spectrometry (MS) under ambient conditions. These multilayer films have been prepared on quartz plates through the alternate assembling of oppositely charged 4‐aminothiophenol (4‐ATP) capped Au particles and thioglycolic acid (TGA) capped Ag particles. An LTP probe was used for direct desorption and ionization of chemical components on the films. Without the complicated sample preparation, the structure information of 4‐ATP and TGA on films was studied by LTP‐MS. Characteristic ions of 4‐ATP (M) and TGA (F), including [M]+?, [M‐NH2]+, [M‐HCN‐H]+, and [F + H]+, [F‐H]+, [F‐OH]+, [F‐COOH]+ were recorded by LTP‐MS on the films. However, [M‐CS‐H]+ and [F‐SH]+ could not be observed on the film, which were detected in the neat sample. In addition, the semi‐quantitative analysis of chemical components on monolayer film was carried out, and the amounts of 4‐ATP and TGA on monolayer surface were 45 ng/mm2 and 54 ng/mm2, respectively. This resulted the ionization efficiencies of 72% for 4‐ATP and 54% for TGA. In order to evaluate the reliability of present LTP‐MS, the correlations between this approach and some traditional methods, such as UV–vis spectroscopy, atomic force microscope and X‐ray photoelectron spectroscopy were studied, which resulted the correlation coefficients of higher than 0.9776. The results indicated that this technique can be used for analyzing the films without any pretreatment, which possesses great potential in the studies of self‐assembly multilayer films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Layer‐by‐layer (LbL) assembly technique is applied for the first time for the preparation of nitrogen‐doped carbon capsules. This approach uses colloid silica as template and two polymeric deposition components, that is, poly(ammonium acrylate) and a poly (ionic liquid) poly(3‐cyanomethyl‐1‐vinylimidazolium bromide), which acts as both the carbon precursor and nitrogen source. Nitrogen‐doped carbon capsules are prepared successfully by polymer wrapping, subsequent carbonization and template removal. The as‐synthesized carbon capsules contain ≈7 wt% of nitrogen and have a structured specific surface area of 423 m2 g−1. Their application as supercapacitor has been briefly introduced. This work proves that LbL assembly methodology is available for preparing carbon structures of complex morphology.  相似文献   

10.
11.
Hollow structures show both light scattering and light trapping, which makes them promising for dye‐sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO2 fibers are prepared by layer‐by‐layer (LbL) self‐assembly deposition of TiO2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO2 nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25–fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50 % in conversion efficiency. By employing the intensity‐modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light‐harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs.  相似文献   

12.
LbL nano self‐assembly coating of A. vinosum with different polyelectrolyte combinations is presented as an example to investigate substrate uptake in bacteria. The effects of surface charge and the formation of a physical barrier provides new insights in the contact mechanisms between the cell surface and insoluble elemental sulfur. Furthermore, uptake of sulfide by encapsulated cells was investigated. Growth experiments of coated cells showed that surface charge did neither affect sulfide uptake nor the contact formation between the cells and solid sulfur. However, increasing layers slowed or inhibited the uptake of sulfide and elemental sulfur. This work demonstrates how defining surface properties of bacteria has potential for microbiological and biotechnological applications.

  相似文献   


13.
Functional fillers in multilayered films provide opportunity in tailoring the mechanical properties through chemical cross‐linking. In this study, Laponite‐graphene oxide co‐dispersion was used to incorporate graphene oxide (GO) easily into polyvinyl alcohol (PVA)/Laponite layer‐by‐layer (LBL) films. The LBL films were found to be uniform and the layer thickness increased linearly with number of depositions. The process was extended to a large number of depositions to investigate the macroscopic mechanical properties of the free‐standing films. The LBL films showed remarkable improvements in mechanical properties as compared to neat PVA film. The GO‐incorporated LBL films displayed higher enhancements in the tensile strength, ductility, and toughness as compared to that of PVA/Laponite LBL films, upon chemical cross‐linking. This suggests the advantageous effects of GO incorporation. Interestingly, cross‐linking of LBL films for longer time period (>1 h) and higher temperature (~80 °C) was not found to be much beneficial. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2377–2387  相似文献   

14.
Deposition of hole injection layers including a perfluorinated ionomer has been demonstrated using layer‐by‐layer spin self‐assembly for enhanced device efficiency and lifetime in PLEDs. We show that the LBL spin self‐assembled thin films enable to control work functions of indium‐tin oxide anodes by changing the PFI concentration and that a resulting green‐emitting device has an enhanced luminescence efficiency and 18 times longer half lifetime than a device using a conventional HIL. We also fabricate a gradient of energy levels by the LBL self‐assembly of the PFI that results in a work function of 5.74 eV, which can be used to improve carrier injection even for an emitting layer whose ionization potential is over 5.7 eV.

  相似文献   


15.
Layer‐by‐layer (LBL) assembly is a versatile nanofabrication technique, and investigation of its kinetics is essential for understanding the assembly mechanism and optimizing the assembly procedure. In this work, the LBL assembly of polyelectrolyte and nanoparticles were monitored in situ by capillary electrophoresis (CE) for the first time. The assembly of poly(diallyldimethylammonium chloride) (PDDA), and gold nanoparticles (AuNPs) on capillary walls causes surface‐charge neutralization and resaturation, and thus yields synchronous changes in the electroosmotic flow (EOF). The EOF data show that formation of multilayers follows first‐order adsorption kinetics. On the basis of the fit results, influencing factors, including number of layers, concentration of materials, flow rate, and size of AuNPs, were investigated. The stability and robustness of the assembled coatings were also characterized by CE. It was found that degradation of PDDA layers follows first‐order chemical kinetics, while desorption of AuNPs takes place in a disorderly manner. The substrate strongly affects assembly of the underlying layer, while this effect is rapidly screened with increasing number of layers. Furthermore, we demonstrate that the EOF measuring step does not disturb LBL assembly, and the proposed method is reliable and rugged. This work not only studies in detail the LBL adsorption/desorption process of polyelectrolyte and nanoparticles, but also offers an alternative tool for monitoring multilayer buildup. It may also reveal the potential of CE in fields other than analytical separation.  相似文献   

16.
Ultrathin multilayer films of a rare-earth-containing polyoxometalate Na9[Eu(W5O18)2](EW) and poly (allymamine hydrochloride)(PAH) have been prepared by layer-by-layer self-assembly from dilute aqueous solution.The fabrication process of the EW/PAH multilaryer films was followed by UV-vis spectroscopy and ellipsometry,which show that the deposition process is linear and highly reproducible from layer to layer.An average EW/PAH bilayer thickness of ca.2.1nm was determined by ellipsometry.In addition,the scanning electron microscopy(SEM) image of the EW/PAH film indicates that the film surface is relatively uniform and smooth.The photoluminescent properties of these films were also investigated by fluorescence spectroscopy.  相似文献   

17.
18.
Fluorescent‐magnetic‐biotargeting multifunctional microcapsules (FMBMMs) are designed and fabricated via layer‐by‐layer assembly. It is found that the arginine‐glycine‐aspartate‐modified FMBMMs were capable of sensitively detecting and efficiently isolating approximately 80% target cancer cells within 20 min. More importantly, FMBMMs present a general template for identifying and separating multiple types of cancer cells simply by altering the recognition motif.

  相似文献   


19.
20.
In this work, myoglobin (Mb) and sulfonated‐β‐cyclodextrin (S‐CD) were assembled into {S‐CD/Mb}n layer‐by‐layer films on solid substrates. In pH 7.0 buffers, the {S‐CD/Mb}n films assembled on electrodes showed a pair of well‐defined and nearly reversible CV peaks at about ?0.35 V vs. SCE. The stable CV response of {S‐CD/Mb}n films could be used to electrocatalyze reduction of oxygen and hydrogen peroxide in solution. For comparison, another modified β‐cyclodextrin, carboxyethyl‐β‐cyclodextrin (C‐CD), was also assembled with Mb into {C‐CD/Mb}n multilayer films. The driving forces of the assembly were explored and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号