首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this paper the dynamical behaviors of a dispersive shallow water equation with viscosity, viscosity Degasperis–Procesi equation, are investigated. The existence of global solution to viscosity Degasperis–Procesi equation in L2 under the periodical boundary condition is studied and the existence of the global attractor of semi-group to solution on viscosity Degasperis–Procesi equation in H2 is obtained.  相似文献   

2.
Travelling-wave solutions of the Degasperis–Procesi equation are investigated. The solutions are characterized by two parameters. For propagation in the positive x-direction, hump-like, inverted loop-like and coshoidal periodic-wave solutions are found; hump-like, inverted loop-like and peakon solitary-wave solutions are obtained as well. For propagation in the negative x-direction, there are solutions which are just the mirror image in the x-axis of the aforementioned solutions. A transformed version of the Degasperis–Procesi equation, which is a generalization of the Vakhnenko equation, is also considered. For propagation in the positive x-direction, hump-like, loop-like, inverted loop-like, bell-like and coshoidal periodic-wave solutions are found; loop-like, inverted loop-like and kink-like solitary-wave solutions are obtained as well. For propagation in the negative x-direction, well-like and inverted coshoidal periodic-wave solutions are found; well-like and inverted peakon solitary-wave solutions are obtained as well. In an appropriate limit, the previously known solutions of the Vakhnenko equation are recovered.  相似文献   

3.
The soliton solutions of the Degasperis–Procesi equations are constructed by the implementation of the dressing method. The form of the one and two soliton solutions coincides with the form obtained by Hirota's method.  相似文献   

4.
In this paper we study the orbital stability of the peaked solitons to the Novikov equation, which is an integrable Camassa–Holm type equation with cubic nonlinearity. We show that the shapes of these peaked solitons are stable under small perturbations in the energy space.  相似文献   

5.
This paper is concerned with the optimal distributed control of the viscous weakly dispersive Degasperis–Procesi equation in nonlinear shallow water dynamics. It is well known that the Pontryagin maximum principle, which unifies calculus of variations and control theory of ordinary differential equations, sets up the theoretical basis of the modern optimal control theory along with the Bellman dynamic programming principle. In this paper, we commit ourselves to infinite dimensional generalizations of the maximum principle and aim at the optimal control theory of partial differential equations. In contrast to the finite dimensional setting, the maximum principle for the infinite dimensional system does not generally hold as a necessary condition for optimal control. By the Dubovitskii and Milyutin functional analytical approach, we prove the Pontryagin maximum principle of the controlled viscous weakly dispersive Degasperis–Procesi equation. The necessary optimality condition is established for the problem in fixed final horizon case. Finally, a remark on how to utilize the obtained results is also made. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We consider conservation laws with source terms in a bounded domain with Dirichlet boundary conditions. We first prove the existence of a strong trace at the boundary in order to provide a simple formulation of the entropy boundary condition. Equipped with this formulation, we go on to establish the well-posedness of entropy solutions to the initial–boundary value problem. The proof utilizes the kinetic formulation and the averaging lemma. Finally, we make use of these results to demonstrate the well-posedness in a class of discontinuous solutions to the initial–boundary value problem for the Degasperis–Procesi shallow water equation, which is a third order nonlinear dispersive equation that can be rewritten in the form of a nonlinear conservation law with a nonlocal source term.  相似文献   

7.
We study here an initial-value problem for the Degasperis–Procesi equation with a strong dispersive term, which is an approximation to the incompressible Euler equations for shallow water waves. We first determine the blow-up set of breaking waves to the equation. We then prove the existence and uniqueness of global weak solutions to the equation with certain initial profiles.  相似文献   

8.
In this article, the variational iteration method (VIM) is used to obtain approximate analytical solutions of the modified Camassa‐Holm and Degasperis‐Procesi equations. The method is capable of reducing the size of calculation and easily overcomes the difficulty of the perturbation technique or Adomian polynomials. The results reveal that the VIM is very effective. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

9.
We consider the problem of the existence of the global solutions and formation of singularities for a b-family of equations which includes the Camassa–Holm and Degasperis–Procesi equation. We also consider the problem of the uniformly continuity of Degasperis–Procesi equation.  相似文献   

10.
Considered herein is the initial-value problem for the periodic Degasperis–Procesi equation with a strong dispersive term that is an approximation to the incompressible Euler equation for shallow water waves. The existence and uniqueness of global weak solutions are established. Moreover, the periodic peakon and shockpeakon solutions of the equation are constructed.  相似文献   

11.
In this paper, we study orbital stability of peakons for the generalized modified Camassa–Holm (gmCH) equation, which is a natural higher-order generalization of the modified Camassa–Holm (mCH) equation, and admits Hamiltonian form and single peakons. We first show that the single peakon is the usual weak solution of the PDEs. Some sign invariant properties and conserved densities are presented. Next, by constructing the corresponding auxiliary function h(t,x) and establishing a delicate polynomial inequality relating to the two conserved densities with the maximal value of approximate solutions, the orbital stability of single peakon of the gmCH equation is verified. We introduce a new approach to prove the key inequality, which is different from that used for the mCH equation. This extends the result on the stability of peakons for the mCH equation (Qu et al. 2013) [36] successfully to the higher-order case, and is helpful to understand how higher-order nonlinearities affect the dispersion dynamics.  相似文献   

12.
The peakons are peaked solitary wave solutions of a certain nonlinear dispersive equation that is a model in shallow water theory and the theory of hyperelastic rods. We give a very simple proof of the orbital stability of the peakons in the H1 norm. © 2000 John Wiley & Sons, Inc.  相似文献   

13.
利用检验函数定义弱解的方法来求解含有任意常数k1,k2的目标方程的单孤子解.给出了目标方程的单孤子解与任意常数k1,k2的关系.  相似文献   

14.
We consider the numerical integration of the Degasperis–Procesi equation, which was recently introduced as a completely integrable shallow water equation. For the equation, we propose nonlinear and linear finite difference schemes that preserve two invariants associated with the bi-Hamiltonian form of the equation at the same time. We also prove the unique solvability of the schemes, and show some numerical examples.  相似文献   

15.
In this paper, we study the orbital stability of the peakons for the Degasperis-Procesi equation with a strong dispersive term on the line. Using the method in [Z. Lin, Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math. 62 (2009) 125-146], we prove that the shapes of these peakons are stable under small perturbations. Some previous results are extended.  相似文献   

16.
In this paper, we employed the bifurcation method and qualitative theory of dynamical systems to study the peakons and periodic cusp waves of the generalization of the Camassa‐Holm equation, which may be viewed as an extension of peaked waves of the same equation. Through the bifurcation phase portraits of traveling wave system, we obtained the explicit peakons and periodic cusp wave solutions. Further, we exploited the numerical simulation to confirmthe qualitative analysis, and indeed, the simulation results are in accord with the qualitative analysis. Compared with the previous works, several new nonlinear wave solutions are obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
We establish the local well-posedness for a generalized Dullin-Gottwald-Holm equation by using Kato’s theory. Furthermore, the orbital stability of the peaked solitary waves is also proved.  相似文献   

18.
The present paper is devoted to study the space identification problem for the elliptic‐telegraph differential equation in Hilbert spaces with the self‐adjoint positive definite operator. The main theorem on the stability of the space identification problem for the elliptic‐telegraph differential equation is proved. In applications, theorems on the stability of three source identification problems for one dimensional with nonlocal conditions and multidimensional elliptic‐telegraph differential equations are established.  相似文献   

19.
The general Degasperis–Procesi equation (gDP) describes the evolution of the water surface in a unidirectional shallow water approximation. We propose a finite-difference scheme for this equation that preserves some conservation and balance laws. In addition, the stability of the scheme and the convergence of numerical solutions to exact solutions for solitons are proved. Numerical experiments confirm the theoretical conclusions. For essentially nonintegrable versions of the gDP equation, it is shown that solitons and antisolitons collide almost elastically: they retain their shape after interaction, but a small “tail”, the so-called “radiation”, appears.  相似文献   

20.
In this paper, we prove the exponential decay as time goes to infinity of regular solutions of the problem for the beam equation with memory and weak damping where is a non‐cylindrical domains of ?n+1 (n?1) with the lateral boundary and α is a positive constant. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号