首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive, rapid and specific liquid chromatography–electrospray ionization–tandem mass spectrometry method was developed and validated for the determination of aristolochic acid‐I (AA‐I) in rat plasma. Finasteride was used as the internal standard (IS). The analyte was separated on a Zorbax Eclipse XDB‐C18 column by isocratic elution with methanol‐10 mM ammonium acetate (75:25, v/v, pH = 7.3) at a flow rate of 0.25 mL/min, and analyzed by mass spectrometry in positive multiple reaction monitoring mode. The precursor‐to‐product ion transitions of m/z 359.0 → 298.2 and m/z 373.1 → 305.2 were used to detect AA‐I and IS, respectively. Good linearity was achieved over a range of 0.4–600 ng/mL. Intra‐ and inter‐day precisions measured as relative standard deviation were less than 13.5%, and accuracy ranged from 94.2 to 97.5%. The developed method was successfully applied in the pharmacokinetic study of AA‐I in rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug. It is mainly metabolized by phase 1 and 2 reactions in the liver, and thus it could be involved in many drug–drug interactions. Therefore, the study of APAP metabolism is important in toxicological and pharmacokinetic studies. The objective of this study was to develop a rapid and sensitive method for the determination of APAP and its six metabolites in rat plasma for the pharmacokinetic studies. APAP and its metabolites were separated through a Capcell Pak MGII C18 column and quantitated with a 16 min run in a triple‐quadruple mass spectrometer. The mobile phases were composed of 0.1% formic acid in either 95% water or 95% acetonitrile and analysis was performed twice in positive and negative modes. Validations such as accuracy, precision, recovery, matrix effect and stability were found to be within acceptance criteria of validation guidelines, indicating that the assay was applicable to the determination of the plasma concentrations of drug and its six metabolites. In conclusion, we developed an LC‐MS/MS method for the quantitative analysis of APAP and its six metabolites in rat plasma, and this method appears to be useful for pharmacokinetic/toxicokinetic studies of APAP and its metabolites in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This report details a method using liquid chromatography–tandem mass spectrometry (LC‐MS/MS) that allows one to determine the concentration of an atypical anticancer drug, enzalutamide, in rat plasma. Specifically, this method involves the addition of an acetonitrile and bicalutamide (internal standard) solution to plasma samples. Following centrifugation of this mixture, an aliquot of the supernatant was directly injected into the LC‐MS/MS system. Separation was achieved using a column packed with octadecylsilica (5 µm, 2.1 × 50 mm) with 10 mM ammonium acetate in acetonitrile as the mobile phase; detection was accomplished using MS/MS by multiple‐reaction monitoring via an electrospray ionization source. This method demonstrated a linear standard curve (r = 0.997) over a concentration range of 0.001–1 µg/mL, as well as an intra‐ and inter‐assay precision of 2.7 and 5.1%, respectively, and an accuracy range from 100.8 to 105.6%. The lower limit of quantification was 1.0 ng/mL in 50 μL of rat plasma sample. We also demonstrated that this analytical method could be successfully applied to the pharmacokinetic study of enzalutamide in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Recently a pyrimidine nucleoside, uridine, has been show to have a protective effect on cultured human corneal epithelial cells, and on dry eye animal model and patients. In this study, we introduce a sensitive liquid chromatography/tandem mass spectrometry method for the determination of uridine in rabbit plasma and urine. After protein precipitation with methanol including methaqualone (internal standard), the analyte was chromatographed on a reversed-phase column with a mobile phase of 0.1% formic acid aqueous solution and methanol (1:4, v/v). The accuracy and precision of the assay were in accordance with Food and Drug Administration regulations for the validation of bioanalytical methods. This method was used to measure the concentrations of uridine in plasma and urine after a single oral administration of 450 mg/kg uridine in rabbits.  相似文献   

6.
The first asymmetric total synthesis of (?)‐ligustiphenol is reported. The key step was conducted by exploiting a steric hindrance effect to control the formation of the adduct in a nucleophilic α‐Li‐phenolate addition reaction to the intermediate α‐oxo (?)‐menthyl ester. The synthesis is concise and feasible for the construction of analogous compounds and investigation of their biological activity.  相似文献   

7.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the simultaneous determination of metacavir and its two metabolites in rat plasma was developed and validated. Tinidazole was used as an internal standard and plasma samples were pretreated with one‐step liquid–liquid extraction. In addition, these analytes were separated using an isocratic mobile phase on a reverse‐phase C18 column and analyzed by MS in the selected reaction monitoring mode. The monitored precursor to product‐ion transitions for metacavir, 2′,3′‐dideoxyguanosine, O‐methylguanine and the internal standard were m/z 266.0 → 166.0, m/z 252.0 → 152.0, m/z 166.0 → 149.0 and m/z 248.0 → 202.0, respectively. The standard curves were found to be linear in the range of 1–1000 ng/mL for metacavir, 5–5000 ng/mL for 2′,3′‐dideoxyguanosine and 1–1000 ng/mL for O‐methylguanine in rat plasma. The precision and accuracy for both within‐ and between‐batch determination of all analytes ranged from 2.83 to 9.19% and from 95.86 to 111.27%, respectively. No significant matrix effect was observed. This developed method was successfully applied to an in vivo pharmacokinetic study after a single intravenous dose of 20 mg/kg metacavir in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid and sensitive liquid chromatography/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method has been developed to determine 1, 2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]-ethane (BBSKE), a novel antineoplastic agent, in rat plasma. The analytes were separated on a C18 column with a mobile phase of methanol-water (75:25, v/v) and detected using a triple-quadrupole mass spectrometer in positive mode with the selective reaction monitoring. The characteristic ion dissociation transitions were m/z 603.0 --> 448.9 for derivatized BBSKE and m/z 631.0 --> 476.8 for derivatized internal standard. The assay was linear over a range of 1-1000 ng/mL with a lower limit of quantification of 1 ng/mL. Intra- and inter-day precisions were less than 9.6 and 5.0%, respectively, and the accuracy ranged from -5.2 to 4.0%. The validated method was successfully applied to the characterization of pharmacokinetic profile of BBSKE after oral administration in rats. Cop  相似文献   

9.
A simple and efficient enantioselective synthesis of chromene, (?)‐(R)‐cordiachromene ( 1 ), and (?)‐(R)‐dictyochromenol ( 2 ) has been accomplished. This convergent synthesis utilizes intramolecular SNAr reaction for the formation of chroman ring, and Seebach's method of ‘self‐reproduction of chirality’ should establish the (R)‐configuration of the C(2) side chain as key steps.  相似文献   

10.
A method for determining a novel phosphodiesterase‐4 inhibitor, 3‐[1‐(3cyclopropylmethoxy‐4‐difluoromethoxybenzyl)‐1H‐pyrazol‐3‐yl]‐benzoic acid (PDE‐423), in rat plasma was developed and validated using liquid chromatography–tandem mass spectrometry for further pharmacokinetic study for development as a novel anti‐asthmatic drug. PDE‐423 in the concentration range of 0.02–10 µg/mL was linear with a correlation coefficient of >0.99, and the mean intra‐ and inter‐assay precisions of the assay were 7.50 and 3.86%, respectively. The validated method was used successfully for a pharmacokinetic study of PDE‐423 in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A reversed‐phase high performance liquid chromatography method has been developed and validated for determination and quantitation of the natural sesquiterpene (−)‐α‐bisabolol. Furthermore the application of the method was done by characterization of chitosan milispheres and liposomes entrapping Zanthoxylum tingoassuiba essential oil, which contains appreciable amount of (−)‐α‐bisabolol. A reversed‐phase C18 column and gradient elution was used with the mobile phase composed of (A) acetonitrile–water–phosphoric acid (19:80:1) and (B) acetonitrile. The eluent was pumped at a flow rate of 0.8 mL/min with UV detection at 200 nm. In the range 0.02–0.64 mg/mL the assay showed good linearity (R2 = 0.9999) and specificity for successful identification and quantitation of (−)‐α‐bisabolol in the essential oil without interfering peaks. The method also showed good reproducibility, demonstrating inter‐day and intra‐day precision based on relative standard deviation values (up to 3.03%), accuracy (mean recovery of 100.69% ± 1.05%) and low values of detection and quantitation limits (0.0005 and 0.0016 mg/mL, respectively). The method was also robust for showing a recovery of 98.81% under a change of solvent in standard solutions. The suitability of the method was demonstrated by the successful determination of association efficiency of the (−)‐α‐bisabolol in chitosan milispheres and liposomes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Oral prochlorperazine (PCZ), an antiemetic, undergoes extensive first-pass metabolism. The study developed a simultaneous analytical method for PCZ and its major metabolites, prochlorperazine sulfoxide (PCZSO), N-demethylprochlorperazine (NDPCZ) and 7-hydroxyprochlorperazine (PCZOH), in human plasma using an isocratic liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Deproteinized plasma specimens were separated using a 3 μm particle size octadecylsilyl column, and the run time was 10 min. The calibration curves were linear over the concentration ranges of 0.01-40 μg/L for PCZ, NDPCZ and PCZOH, and 0.05-80 μg/L for PCZSO. The intra- and inter-assay precisions and accuracies were within 7.0 and 99-104% and within 9.0 and 99-105%, respectively. The lower limits of quantification in human plasma were 10 ng/L for PCZ, NDPCZ and PCZOH, and 50 ng/L for PCZSO. The validated method was applied to the determination of plasma samples in 37 cancer patients receiving PCZ. Large interindividual variations were observed in plasma concentrations of PCZ, PCZSO, NDPCZ and PCZOH (relative standard deviation, 89.4, 88.7, 86.4 and 78.2%, respectively). In conclusion, this simultaneous LC-MS/MS method with acceptable analytical performance can be helpful for evaluating the pharmacokinetics of PCZ, including the determination of its metabolites in cancer patients and in clinical research.  相似文献   

13.
A high‐throughout bioanalytical method based on salting‐out‐assisted liquid/liquid extraction (SALLE) method with acetonitrile and mass spectrometry‐compatible salts followed by LC‐MS/MS analysis of trimetazidine in rat plasma is presented. It required only 50 μL of plasma and allows the use of minimal volumes of organic solvents. The seamless interface of SALLE and LC‐MS eliminated the drying‐down step and the extract was diluted and injected into an LC‐MS/MS system with a cycle time of 2.5 min/sample. The retention times of trimetazidine and IS were approximately 1.1 and 1.7 min, respectively. Calibration curves were linear over the concentration range of 0.1–100 ng/mL, which can be extended to 500 ng/mL by dilution. The intra‐ and inter‐batch precision, accuracy and the relative standard deviation were all <15%. This method was successfully applied to determine trimetazidine concentrations in rat plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
15.
BMS-378806 is a human immunodeficiency virus (HIV) entry inhibitor that is being developed for the oral treatment of HIV infection. Human plasma and urine LC/MS/ MS methods have been developed and validated for the quantitation of BMS-378806. For human plasma method, methyl t-butyl ether was used to extract BMS-378806 from plasma in a 96-well format, and the organic layers were dried down and then reconstituted for the injection, while a dilute-and-shoot approach was used for human urine method in a 96-well format. Chromatographic separation was achieved isocratically on a Phenomenex C18 (2) Luna column (2 x 50 mm2, 5 microm). The mobile phase contained 60:40 v/v of 0.1% formic acid in water and ACN. Detection was by positive ion electrospray MS/MS. The standard curves ranged from 1.25 to 1000 ng/mL for the plasma assay and from 10 to 5000 ng/mL for the urine assay. The curves were fitted to a 1/x2 weighted quadratic regression model for both methods. The validation results demonstrated that both methods had satisfactory precision and accuracy across the calibration ranges. The methods were applied to the analysis of human plasma and urine samples from a single ascending dose clinical study to assess the pharmacokinetics of the drug. The pharmacokinetic analysis results indicated the absorption and disposition of the drug was rapid. The systemic exposure of BMS-378806 was generally dose proportional among the doses from 100 to 1200 mg, but not dose proportional to 1600 mg. There were modest increases in the systemic exposure when the drug was given with food or given as a solution formulation. Renal excretion was not a substantial elimination pathway of the drug. BMS378806 was safe and well tolerated over a dose range of 100-1600 mg administered as a single oral dose.  相似文献   

16.
In this study, we developed a method for the determination of PF‐04620110 (2‐{(1r,4r)‐4‐[4‐(4‐amino‐5‐oxo‐7,8‐dihydropyrimido[5,4‐f][1,4]oxazepin‐6(5H)‐yl)phenyl]cyclohexyl}acetic acid), a novel diacylglycerol acyltransferase 1 (DGAT‐1) inhibitor, in rat plasma and validated it using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). Rat plasma samples were processed following a protein precipitation method by using acetonitrile and were then injected into an LC‐MS/MS system for quantification. PF‐04620110 and imipramine (internal standard) were separated using a Hypersil Gold C18 column, with a mixture of acetonitrile and 10 mm ammonium formate (90:10, v/v) as the mobile phase. The ion transitions monitored in positive‐ion mode [M + H]+ of multiple‐reaction monitoring were m/z 397.0 → 260.2 for PF‐04620110 and m/z 280.8 → 86.0 for imipramine. The detector response was specific and linear for PF‐04620110 at concentrations within the range 0.05–50 µg/mL and the signal‐to‐noise ratios for the samples were ≥10. The intra‐ and inter‐day precision and accuracy of the method matched the acceptance criteria for assay validation. PF‐04620110 was stable under various processing and/or handling conditions. PF‐04620110 concentrations in the rat plasma samples could be measured up to 24 h after intravenous or oral administration of PF‐04620110, suggesting that the assay is useful for pharmacokinetic studies in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In the present study we developed and validated a liquid chromatography/tandem mass spectrometry (LC‐MS/MS) assay for the determination of flucloxacillin in human plasma and microdialysis samples and cloxacillin in microdialysis samples, using oxacillin as the internal standard for the assay. The samples were separated on a UPLC BEH C18,1.7 µm column (2.1 × 50 mm) and analyzed by a tandem–quadrupole mass spectrometer in multiple reaction monitoring mode using an electronspray ionization interface. For flucloxacillin the method was demonstrated to be accurate and precise in the linearity range of 1–30 mg/L in plasma and 0.05–5.0 mg/L for microdialysate with a regression coefficient (r) of 0.9986 and 0.9989 in plasma and microdialysate respectively. For cloxacillin it was accurate and precise in the range of 0.1–5.0 mg/L for microdialysate with a regression coefficient of 0.9972. The method presents a high sensitivity for flucloxacillin (lower limit of quantification of 1 mg/L for plasma and 0.05 mg/L for microdialysis samples) combined with a low within‐ and between‐day variation (<5.0% for flucloxacillin and cloxacillin in microdialysis samples and <6.5% for plasma samples of flucloxacillin). The validation experiments for the microdialysis probes showed a relative recovery of 85.5% for flucloxacillin at a flow rate of 1.0 μL/min. The results justify the use of this assay for clinical studies for measuring free unbound tissue concentrations of flucloxacillin in patients with a Staphylococcus aureus bacteremia. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
To characterize the preclinical plasma pharmacokinetics of entrectinib, a reproducible and precise assay is necessary. In this study, we developed and validated a simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method for the measurement of entrectinib using carbamazepine as the internal standard in rat plasma. Sample preparation was a simple protein precipitation with acetonitrile, then entrectinib was eluted on an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) using a gradient elution with a mobile phase composed of acetonitrile (A) and 0.1% formic acid in water (B). Detection was achieved using multiple‐reaction monitoring in positive ion electrospray ionization mode. The method showed good linearity over the concentration range of 1–250 ng/mL (r2 > 0.9951). The intra‐ and inter‐day precision was determined with the values of 6.3–12.9 and 2.6–6.9%, respectively, and accuracy values of 0.5–11.6%. Matrix effect, extraction recovery, and stability data all met the acceptance criteria of US Food and Drug Administration guidelines for bioanalytical method validation. The method was successfully applied to a pharmacokinetic study. In this study, we developed the complete validated method for the quantification of entrectinib in rat plasma.  相似文献   

19.
Dendrobine, considered as the major active alkaloid compound, has been used for the quality control and discrimination of Dendrobium which is documented in the Chinese Pharmacopoeia. In this work, a sensitive and simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method for determination of dendrobine in rat plasma is developed. After addition of caulophyline as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 (2.1 ×100 mm, 1.7 µm) column with acetonitrile and 0.1% formic acid as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 264.2 → 70.0 for dendrobine and m/z 205.1 → 58.0 for IS. Calibration plots were linear throughout the range 2–1000 ng/mL for dendrobine in rat plasma. The RSDs of intra‐day and inter‐day precision were both <13%. The accuracy of the method was between 95.4 and 103.9%. The method was successfully applied to pharmacokinetic study of dendrobine after intravenous administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Ye S  Yao Z  Na G  Wang J  Ma D 《Journal of separation science》2007,30(15):2360-2369
This paper describes a rapid method for the determination of 14 kinds of sulfonamides (SAs) in wastewater using SPE, and LC-MS/MS with positive ESI (ESI(+)) and selected reaction monitoring (SRM) mode. The SPE was performed on an Oasis hydrophilic-lipophilic-balanced (HLB) cartridge. Chromatographic separation on a C18 column was achieved using a binary eluent containing methanol and water with 0.2% formic acid. Typical recoveries of the analytes ranged from 22.3 to 87.0% at a fortification level of 100 ng/L. The LODs in wastewater except sulfathiazole (3 ng/L) could be detected and quantified at levels as low as 1 ng/L. Finally, the method was applied to water from the municipal outlet and the aquaculture wastewater effluent. Sulfamethazine (SM(2)), sulfamethoxypyridazine (SMP), and sulfamethoxazole (SMZ) were most frequently found in wastewater in a concentration range between 1.2 and 31.7 ng/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号