首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integration of redox proteins with nanomaterials has attracted much interest in the past years, and metallic single‐walled carbon nanotubes (SWNTs) have been introduced as efficient electrical wires to connect biomolecules to metal electrodes in advanced nano‐biodevices. Besides preserving biofunctionality, the protein–nanotube connection should ensure appropriate molecular orientation, flexibility, and efficient, reproducible electrical conduction. In this respect, yeast cytochrome c redox proteins are connected to gold electrodes through lying‐down functionalized metallic SWNTs. Immobilization of cytochromes to nanotubes is obtained via covalent bonding between the exposed protein thiols and maleimide‐terminated functional chains attached to the carbon nanotubes. A single‐molecule study performed by combining scanning probe nanoscopies ascertains that the protein topological properties are preserved upon binding and provides unprecedented current images of single proteins bound to carbon nanotubes that allow a detailed IV characterization. Collectively, the results point out that the use as linkers of suitably functionalized metallic SWNTs results in an electrical communication between redox proteins and gold electrodes more efficient and reproducible than for proteins directly connected with metal surfaces.  相似文献   

2.
The temperature dependence of the electrical characteristics of field‐effect transistors (FETs) based on polymer‐sorted, large‐diameter semiconducting carbon nanotube networks is investigated. The temperature dependences of both the carrier mobility and the source‐drain current in the range of 78 K to 293 K indicate thermally activated, but non‐Arrhenius, charge transport. The hysteresis in the transfer characteristics of FETs shows a simultaneous reduction with decreasing temperature. The hysteresis appears to stem from screening of charges that are transferred from the carbon nanotubes to traps at the surface of the gate dielectric. The temperature dependence of sheet resistance of the carbon nanotube networks, extracted from FET characteristics at constant carrier concentration, specifies fluctuation‐induced tunneling as the mechanism responsible for charge transport, with an activation energy that is dependent on film thickness. Our study indicates inter‐tube tunneling to be the bottleneck and implicates the role of the polymer coating in influencing charge transport in polymer‐sorted carbon nanotube networks.  相似文献   

3.
Field‐effect transistors that employ an electrolyte in place of a gate dielectric layer can accumulate ultrahigh‐density carriers not only on a well‐defined channel (e.g., a two‐dimensional surface) but also on any irregularly shaped channel material. Here, on thin films of 95% pure metallic and semiconducting single‐walled carbon nanotubes (SWNTs), the Fermi level is continuously tuned over a very wide range, while their electronic transport and absorption spectra are simultaneously monitored. It is found that the conductivity of not only the semiconducting but also the metallic SWNT thin films steeply changes when the Fermi level reaches the edges of one‐dimensional subbands and that the conductivity is almost proportional to the number of subbands crossing the Fermi level, thereby exhibiting a one‐dimensional nature of transport even in a tangled network structure and at room temperature.  相似文献   

4.
碳纳米管作为超大容量离子电容器电极的研究   总被引:10,自引:0,他引:10       下载免费PDF全文
梁逵  陈艾  周旺  王巍 《电子学报》2002,30(5):621-623
本文采用碳纳米管作为超大容量离子电容器的电极材料,研究了硝酸改性处理、粘结剂对电极的电容器性能的影响,探讨了其电容的形成机理.当用硝酸改性处理的碳纳米管作电极,用30%(wt)的H2SO4作电解质溶液时,所得超大容量离子电容器不仅能形成双电层电容,也能形成赝电容,从而得到了69F/g的比电容;同时碳纳米管电极超大容量离子电容器具有良好的频率响应特性.  相似文献   

5.
A novel solution spinning method to produce highly conducting carbon nanotube (CNT) biofibers is reported. In this process, carbon nanotubes are dispersed using biomolecules such as hyaluronic acid, chitosan, and DNA, and these dispersions are used as spinning solutions. Unlike previous reports in which a polymer binder is used in the coagulation bath, these dispersions can be converted into fibers simply by altering the nature of the coagulation bath via pH control, use of a crosslinking agent, or use of a biomolecule‐precipitating solvent system. With strength comparable to most reported CNT fibers to date, these CNT biofibers demonstrate superior electrical conductivities. Cell culture experiments are performed to investigate the cytotoxicity of these fibers. This novel fiber spinning approach could simplify methodologies for creating electrically conducting and biocompatible platforms for a variety of biomedical applications, particularly in those systems where the application of an electrical field is advantageous?for example, in directed nerve and/or muscle repair.  相似文献   

6.
7.
The synthesis and characterization of thin films of polyaniline/carbon nanotubes nanocomposites is reported, as well as their utilization as transparent electrodes in ITO‐free organic photovoltaic devices. These films are generated by interfacial synthesis, which provides them with the unique ability to be deposited onto any substrate as transparent films, thus enabling the production of flexible solar cells using substrates like PET. Very high carbon nanotube loadings can be achieved using these films without significantly affecting their transparency (≈80–90% transmittance at 550 nm). Sheet resistances as low as 300 Ω/□ are obtained using secondary polyaniline doping in the presence of carbon nanotubes. These films present excellent mechanical stability, exhibiting no lack in performance after 100 bend cycles. Flexible and completely ITO‐free organic photovoltaic devices are built using these films as transparent electrodes, and high efficiencies (up to 2.27%) are achieved.  相似文献   

8.
Nitrogen‐enriched nonporous carbon materials derived from melamine–mica composites are subjected to ammonia treatment to further increase the nitrogen content. For samples preoxidized prior to the ammonia treatment, the nitrogen content is doubled and is mainly incorporated in pyrrol‐like groups. The materials are tested as electrodes for supercapacitors, and in acidic or basic electrolytes, the gravimetric capacitance of treated samples is three times higher than that of untreated samples. This represents a tenfold increase of the capacitance per surface area (3300 µF cm?2) in basic electrolyte. Due to the small volume of the carbon materials, high volumetric capacitances are achieved in various electrolytic systems: 280 F cm?3 in KOH, 152 F cm?3 in H2SO4, and 92 F cm?3 in tetraethylammonium tetrafluoroborate/propylene carbonate.  相似文献   

9.
A transistor based on an individual multiwalled carbon nanotube is studied under high‐pressure up to 1 GPa. Dramatic effects are observed, such as the lowering of the Schottky barrier at the gold–nanotube contacts, the enhancement of the intertube conductance, including a discontinuity related to a structural transition, and the decrease of the gate hysteresis of the device.  相似文献   

10.
Organolead halide perovskite solar cells (PSC) are arising as promising candidates for next‐generation renewable energy conversion devices. Currently, inverted PSCs typically employ expensive organic semiconductor as electron transport material and thermally deposited metal as cathode (such as Ag, Au, or Al), which are incompatible with their large‐scale production. Moreover, the use of metal cathode also limits the long‐term device stability under normal operation conditions. Herein, a novel inverted PSC employs a SnO2‐coated carbon nanotube (SnO2@CSCNT) film as cathode in both rigid and flexible substrates (substrate/NiO‐perovskite/Al2O3‐perovskite/SnO2@CSCNT‐perovskite). Inverted PSCs with SnO2@CSCNT cathode exhibit considerable enhancement in photovoltaic performance in comparison with the devices without SnO2 coating owing to the significantly reduced charge recombination. As a result, a power conversion efficiency of 14.3% can be obtained on rigid substrates while the flexible ones achieve 10.5% efficiency. More importantly, SnO2@CSCNT‐based inverted PSCs exhibit significantly improved stability compared to the standard inverted devices made with silver cathode, retaining over 88% of their original efficiencies after 550 h of full light soaking or thermal stress. The results indicate that SnO2@CSCNT is a promising cathode material for long‐term device operation and pave the way toward realistic commercialization of flexible PSCs.  相似文献   

11.
We have investigated the key factors determining the performance of supercapacitors constructed using single‐walled carbon nanotube (SWNT) electrodes. Several parameters, such as composition of the binder, annealing temperature, type of current collector, charging time, and discharging current density have been optimized for the best performance of the supercapacitor with respect to energy density and power density. We find a maximum specific capacitance of 180 F/g and a measured power density of 20 kW/kg at energy densities in the range from 7 to 6.5 Wh/kg at 0.9 V in a solution of 7.5 N KOH (the currently available supercapacitors have energy densities in the range 6–7 Wh/kg and power density in the range 0.2–5 kW/kg at 2.3 V in non‐aqueous solvents).  相似文献   

12.
A highly active iron–nitrogen‐doped carbon nanotube catalyst for the oxygen reduction reaction (ORR) is produced by employing vertically aligned carbon nanotubes (VA‐CNT) with a high specific surface area and iron(II) phthalocyanine (FePc) molecules. Pyrolyzing the composite easily transforms the adsorbed FePc molecules into a large number of iron coordinated nitrogen functionalized nanographene (Fe–N–C) structures, which serve as ORR active sites on the individual VA‐CNT surfaces. The catalyst exhibits a high ORR activity, with onset and half‐wave potentials of 0.97 and 0.79 V, respectively, versus reversible hydrogen electrode, a high selectivity of above 3.92 electron transfer number, and a high electrochemical durability, with a 17 mV negative shift of E 1/2 after 10 000 cycles in an oxygen‐saturated 0.5 m H2SO4 solution. The catalyst demonstrates one of the highest ORR performances in previously reported any‐nanotube‐based catalysts in acid media. The excellent ORR performance can be attributed to the formation of a greater number of catalytically active Fe–N–C centers and their dense immobilization on individual tubes, in addition to more efficient mass transport due to the mesoporous nature of the VA‐CNTs.  相似文献   

13.
Growing aligned carbon nanotubes (CNTs) on electrically conducting and/or optically transparent materials is potentially useful for accessing CNT properties through electrical and optical stimuli. Here, we report a new approach to growing aligned bundles of multiwalled CNTs on a porous back contact of optically transparent and electrically conducting indium tin oxide (ITO) films on silicon and silica substrates without the use of a predeposited catalyst. CNTs grow from a xylene/ferrocene mixture, which traverses through the pores in the thin ITO film, and decomposes on an interfacial silica layer formed via the reaction between ITO and the Si substrate. The CNTs inherit the topography of the silica substrate, enabling back‐contact formation for CNTs grown in any predetermined orientation. These features can be harnessed to form CNT contacts with other substrate materials which, upon reduction by Si, results in a conducting interfacial layer. The ITO‐contacted CNTs exhibit thermally activated ohmic behavior across a 100 ± 10 meV barrier at electric fields below ~ 100 V cm–1 due to carrier transport through the outermost shells of the CNTs. At higher electric fields, we observe superlinear behavior due to carrier tunneling and transport through the inner graphene shells. Our findings open up new possibilities for integrating CNTs with Si‐based device technologies.  相似文献   

14.
A one‐dimensional heterojunction is fabricated and characterized. This heterojunction comprises a Ni nanowire, a multiwalled carbon nanotube (MWCNT), and an amorphous carbon nanotube (a‐CNT). The three components are in an end‐to‐end configuration, and form two MWCNT contacts, namely a Ni/MWCNT and an MWCNT/a‐CNT contact. The interfacial structures of the two contacts show that multiple outer walls in the MWCNT simultaneously contact the Ni nanowire and the a‐CNT, and can simultaneously participate in electrical transport. By investigating the electrical‐transport properties of the heterojunctions, the two contacts to the MWCNT in every heterojunction are found to behave as two diodes connected in series face‐to‐face, at least one of which exhibits the characteristics of a nearly ideal Schottky diode and obeys thermionic‐emission theory, wherein only the image force lowers the Schottky barrier. The appearance of this type of nearly ideal diode is attributed to the good contacts to the multiple outer walls of the MWCNTs realized by the heterojunctions' structures.  相似文献   

15.
The development of flexible supercapacitors with high volumetric performance is critically important for portable electronics applications, which are severely volume limited. Here, dead‐end tube membrane (DETM) ultrafiltration is used to produce densely compacted carbon‐nanotube/graphene fibrous films as solid‐state supercapacitor electrodes. DETM is widely used in the water purification industry, but to date its use has not been explored for making supercapacitor electrode materials. Compared with vacuum‐assisted filtration, dead‐end filtration of the mixture through a porous membrane is carried out under much higher pressure, and thus the solvent can be gotten rid of much faster, with less energy consumption and in an environmentally friendly manner. More importantly, phase separation of the solid constituents in the mixture, due to concentration increase, can be suppressed in DETM. Therefore, highly uniform and densely compacted supercapacitor electrodes can be obtained with very high volumetric energy and power density. The volumetric energy density in this work (≈2.7 mWh cm‐3) is at a higher level than all the all‐solid‐state fibrous supercapacitors reported to date. This can be attributed to the DETM process used, which produces a densely compacted network structure without compromising the availability of electrochemically active surface area.  相似文献   

16.
Strategies for obtaining materials that respond to external stimuli by changing shape are of intense interest for the replacement of traditional actuators. Here, a strategy that enables programmable, multiresponsive actuators that use either visible light or electric current to drive shape change in composites comprising carbon nanotubes (CNTs) in liquid crystal elastomers (LCEs) is presented. In the nanocomposites, the CNTs function not only in the traditional roles of mechanical reinforcement and enhancers of thermal and electrical conductivity but also serve as an alignment layer for the LCEs. By controlling the orientation, location, and quantity of layers of CNTs in LCE/CNT composites, programmed, patterned actuators are built that respond to visible light or electrical current. Photothermal LCE/CNT film actuators undergo fast shape change, within 1.2 s using 280 mW cm?2 light input, and complex, programmed localized deformations. Furthermore, twisting LCE/CNT composite films into a fiber increases uniaxial muscle stroke and work capacity for electrothermal actuation, thereby enabling about 12% actuation strain and 100 kJ m?3 of work capacity in response to an applied DC voltage of 15.1 V cm?1.  相似文献   

17.
Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐ phenylenevinylene], i.e., MEH‐PPV) with remarkable regularity over large areas were produced by controlled “stick‐slip” motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere‐on‐flat geometry). Subsequently, MEH‐PPV rings were exploited as a template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self‐assembly processes, namely, evaporation‐induced self‐assembly of polymers in a sphere‐on‐flat geometry, followed by subsequent directed self‐assembly of MWNTs on the polymer‐templated surfaces.  相似文献   

18.
The rational combination of conductive nanocarbon with sulfur leads to the formation of composite cathodes that can take full advantage of each building block; this is an effective way to construct cathode materials for lithium–sulfur (Li–S) batteries with high energy density. Generally, the areal sulfur‐loading amount is less than 2.0 mg cm?2, resulting in a low areal capacity far below the acceptable value for practical applications. In this contribution, a hierarchical free‐standing carbon nanotube (CNT)‐S paper electrode with an ultrahigh sulfur‐loading of 6.3 mg cm?2 is fabricated using a facile bottom–up strategy. In the CNT–S paper electrode, short multi‐walled CNTs are employed as the short‐range electrical conductive framework for sulfur accommodation, while the super‐long CNTs serve as both the long‐range conductive network and the intercrossed mechanical scaffold. An initial discharge capacity of 6.2 mA·h cm?2 (995 mA·h g?1), a 60% utilization of sulfur, and a slow cyclic fading rate of 0.20%/cycle within the initial 150 cycles at a low current density of 0.05 C are achieved. The areal capacity can be further increased to 15.1 mA·h cm?2 by stacking three CNT–S paper electrodes—resulting in an areal sulfur‐loading of 17.3 mg cm?2—for the cathode of a Li–S cell. The as‐obtained free‐standing paper electrode are of low cost and provide high energy density, making them promising for flexible electronic devices based on Li–S batteries.  相似文献   

19.
Vanadium‐coated carbon‐xerogel microspheres are successfully prepared by a specific designed sol–gel method, and their supercapacitor behavior is tested in a two‐electrode system. Nitrogen adsorption shows that these composite materials present a well‐developed micro‐ and mesoporous texture, which depends on the vanadium content in the final composite. A high dispersion of vanadium oxide on the carbon microsphere surface is reached, being the vanadium particle size around 4.5 nm. Moreover, low vanadium oxidation states are stabilized by the carbon matrix in the composites. The complete electrochemical characterization of the composites is carried out using cyclic voltammetry, chronopotentiometry, cycling charge–discharge, and impedance spectroscopy. The results show that these composites present high capacitance as 224 F g?1, with a high capacitance retention which is explained on the basis of the presence of vanadium oxide, texture, and chemistry surface.  相似文献   

20.
Graphene oxide (GO) has recently attracted a great deal of attention because of its heterogeneous chemical and electronic structures and its consequent exhibition of a wide range of potential applications, such as plastic electronics, optical materials, solar cells, and biosensors. However, its insulating nature also limits its application in some electronic and energy storage devices. In order to further widen the applications of GO, it is necessary to keep its inherent characteristics while improving its conductivity. Here, a novel leaf‐like GO with a carbon nanotube (CNT) midrib is developed using vapor growth carbon fiber (VGCF) through the conventional Hummers method. The CNT midrib provides a natural electron diffusion path for the leaf‐like GO, and therefore, this leaf‐like GO with a CNT midrib displays excellent performance when applied in energy storage devices, including Li‐O2 batteries, Li‐ion batteries, and supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号