首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The antimalarial drug primaquine (PQ) and its contaminant, the positional isomer quinocide (QC) have been successfully separated using capillary electrophoresis with either β‐cyclodextrin (β‐CD) or 18‐crown‐6 ether (18C6) as chiral mobile phase additive. The interactions of the drugs with cyclodextrins and 18C6 were studied by the semiempirical method (Parametric Model 3) PM3. Theoretical calculations for the inclusion complexes of PQ and QC with α‐CD, β‐CD and 18C6 were performed. Data from the theoretical calculations are correlated and discussed with respect to the electrophoretic migration behavior. More stable complexes are predicted for the PQ–β‐CD and PQ–18C6 complexes. The coelution of PQ and QC when α‐CD was used as buffer additive can be explained by their comparable stabilities of the inclusion complex formed, while significant differences in the complexation stabilities of the drugs with β‐CD is responsible for their separation. The stronger hydrogen bonding in PQ–18C6 system is responsible for the separation between PQ and QC when 18C6 was used as chiral mobile phase additive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Two novel types of crown ether capped β‐cyclodextrin (β‐CD) bonded silica, namely, 4′‐aminobenzo‐X‐crown‐Y (X=15, 18 and Y=5, 6, resp.) capped [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy] propylsilyl‐appended silica, have been prepared and used as stationary phases in capillary electrochromatography (CEC) to separate chiral compounds. The two stationary phases have a chiral selector with two recognition sites: crown ether and β‐CD. They exhibit excellent enantioselectivity in CEC for a wide range of compounds. After inclusion of metal ions (Na+ or K+) from the running buffer into the crown ether units, the stationary phases become positively charged and can provide extra electrostatic interaction with ionizable solutes and enhance the dipolar interaction with polar neutral solutes. This enhances the host‐guest interaction with the solute and improves chiral recognition and enantioselectivity. Due to the cooperation of the anchored β‐CD and the crown ether, this kind of crown ether capped β‐CD bonded phase shows better enantioselectivity than either β‐CD‐ or crown ether bonded phases only. These new types of stationary phases have good potential for fast chiral separation with CEC.  相似文献   

3.
In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl ‐phenylalanine; dl ‐tryptophan) using β‐Cyclodextrin and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β‐CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β‐CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA‐I, 18AA‐II and 3AA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A novel chiral ionic liquid functionalized β‐cyclodextrin, 6‐O‐2‐hydroxpropyltrimethylammonium‐β‐cyclodextrin tetrafluoroborate ([HPTMA‐β‐CD][BF4]), was synthesized and used as a chiral selector in capillary electrophoresis. [HPTMA‐β‐CD][BF4] not only increased the solubility in aqueous buffer in comparison with the parent compound, but also provided a stable reversal electroosmotic flow, and the enantioseparation of eight chiral drugs was examined in phosphate buffer containing [HPTMA‐β‐CD][BF4] as the chiral selector. The effects of the [HPTMA‐β‐CD][BF4] concentration and the background electrolyte pH were studied. Moreover, the chiral separation abilities of β‐CD and [HPTMA‐β‐CD][BF4] were compared and possible mechanisms for the chiral recognition of [HPTMA‐β‐CD][BF4] are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive method for enantioseparation of a basic drug rivastigmine and determination of its optical impurityby capillary electrophoresis with highly sulfated β-cyclodextrin(HS-β-CD)as the chiral selector is described.Ingeneral,enantioseparation of basic chiral compounds is carried out in acidic condition(pH 2.5)to prevent analytesfrom adsorption on the capillary wall.However,in the case of rivastigmine,the detection sensitivity was too limitedto determine the optical impurity of S-rivastigmine lower than 1% when buffer pH was 2.5.It was found that thedetection sensitivity was improved 1.6 times just by raising the buffer pH value from 2.5 to 5.8.The poor columnefficiency due to the adsorption of the analytes on the capillary wall was resolved by using dynamical coating of thecapillary wall with the linear polyacrylamide solution.The experirnental parameters such as the concentration ofHS-β-CD,buffer pH and buffer ionic strength were optimized,respectively.The method was validated in terms ofrepeatability,linearity,limit of detection(LOD)and limit of quantitation(LOQ).Using the present method,the op-tical purity of nonracemic rivastigmine with the enantiomeric excess(ee)value of 99.14% was determined.  相似文献   

6.
郑志侠屈锋  林金明 《中国化学》2003,21(11):1478-1484
Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.  相似文献   

7.
The enantioseparation of chiral drugs via CE was first investigated using β‐CD as chiral additive and deep eutectic solvents (DESs) as auxiliary additive. The results showed that improved separation of tested chiral drugs was obtained in the presence of DESs and β‐CD compared to the single β‐CD separation system. With the optimized condition, resolutions of DESs applied β‐CD separation system for rac‐Zopiclone, rac‐Salbutamol, and rac‐Amlodipine increased 3–4.2 times as single β‐CD separation system. The resolutions reached 4.74, 6.37, and 9.67, respectively. The results demonstrate that DESs are viable additives to CD system in CE for the separation of the chiral drugs.  相似文献   

8.
A CE method using CDs as chiral selectors was developed and validated to achieve the separation of glycidyl tosylate enantiomers originated by in situ derivatization of glycidol enantiomers obtained in asymmetric epoxidation of allyl alcohol with chiral titanium‐tartrate complexes as catalysts. The effects of the nature, pH and concentration of the buffer, the nature and concentration of chiral selector, the addition of SDS, methanol, ethanol or 2‐propanol, the capillary temperature, the effective capillary length and the applied voltage on the chiral resolution of glycidyl tosylate enantiomers were investigated. The best separation conditions were achieved using a Tris‐borate buffer mixture (50 and 25 mM, respectively) at pH=9.3 with a dual CD system consisting of 2.5% succinyl‐β‐CD and 1.0% β‐CD w/v at 15°C. A baseline separation (resolution~2.0) of the glycidyl tosylate enantiomers was obtained in a relatively short time (less than 12 min). Satisfactory results were obtained in terms of linearity (r>0.99) and intermediate precision (RSD below 8.5%). The LOD and LOQ were 3.0 and 10.0 mg/L, respectively, and the recoveries ranged from 99.8 to 108.8%. Finally, the method was applied to the determination of the enantiomeric excess and the yield obtained in the asymmetric epoxidation of allyl alcohol employing chiral titanium‐tartrate complexes as catalysts after an in situ derivatization of glycidol enantiomers to glycidyl tosylate.  相似文献   

9.
An overview is presented of the applicability of the crown ether 18-crown-6-tetracarboxylic acid (18C6H4) as buffer additive in capillary electrophoresis (CE) for the separation of enantiomers. The chiral selector 18C6H4 is particularly useful for the separation of racemates having a primary amino function. Unfortunately, the crown ether is no longer commercially available. The synthesis and spectroscopic characterization are therefore described in detail. Moreover, a method is presented for the regeneration of the crown ether after CE application. Some new enantiomeric separations of amino acids i.e. NORLEU, ARG, GLU, m-TYR, and o-TYR are listed and the influence of the pH and temperature of the separation buffer is discussed. An intermediate in the synthetic pathway, namely 18-crown-6-tetracarboxamide, did not exhibit any enantioselectivity in CE.  相似文献   

10.
A novel open‐tubular capillary electrochromatography column coated with β‐cyclodextrin was prepared using the sol‐gel technique. In the sol‐gel approach, owing to the three‐dimensional network of sol‐gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating enantiomers were shown. The influences of capillary inner diameter, coating time, organic modifier, buffer pH, and buffer concentration on separation were investigated. The sol‐gel‐coated β‐cyclodextrin column has shown improved enantioseparation efficiency of chlorphenamine, brompheniramine, pheniramine, zopiclone in comparison with the sol‐gel matrix capillary column. The migration time relative standard deviation of the separation of the enantiomers was less than 0.89% over five runs and 2.9% from column to column. This work confirmed that gold nanoparticles are promising electrochromatographic support to enhance the phase ratio of open‐tubular capillary electrochromatography column in capillary electrochromatography.  相似文献   

11.
In this work, chiral separation of enantiomers of three amino acids was achieved using capillary electrophoresis technique with α-cyclodextrin (αCD) as a running buffer additive. Only tryptophan has exhibited baseline separation in the presence of αCD, while the enantiomers of the other two amino acids, phenylalanine and tyrosine, were only partially separated. The addition of 18-crown-6 (18C6) as a second additive imparted only slight improvement to the separation of all enantiomers. On the other hand, all three racemic amino acid mixtures demonstrated no indication of separation when the larger cavity cyclodextrin members, β- and γCD, are used as running buffer chiral additives. However, remarkable improvements in the separation of the enantiomers of phenylalanine and tyrosine were obtained when 18C6 is used together with βCD as a running buffer additive. Surprisingly, tryptophan enantiomers were not separated by the dual additive system of cyclodextrin and crown ether. Using electrospray ionization mass spectrometry (ESI-MS), all amino acids were found to form stable binary complexes with individual hosts as well as ternary compounds involving the crown ether and the cyclodextrin. Furthermore, we used molecular dynamics (MD) simulations to build a clear picture about the interaction between the guest and the hosts. Most of these complexes remained stable throughout the simulation times, and the molecular dynamics study allowed better understanding of these supramolecular assemblies.  相似文献   

12.
This work reported that ionic liquid (IL) ([Bmim] [PF6]) and sulfobutylether‐β‐CD (SBE‐β‐CD) were used as electrolyte additives for the separation and determination of camptothecin (CPT) alkaloids by CZE. Separation parameters such as the buffer type, pH, and concentration of the running buffer, the concentration of SBE‐β‐CD and IL, temperature, and separation voltage were all investigated in order to achieve the maximum possible resolution. The four analytes were baseline separated within 10 min in capillary at the separation voltage of 15 kV with a running buffer consisting of 20 mM borate buffer, 20 mM IL, and 100 mM SBE‐β‐CD at pH 9.0. Under such conditions, good linearity about two orders of magnitudes of peak areas was achieved for the investigated CPT alkaloids with the correlation coefficients ranging from 0.9946 to 0.9985. For all analytes, detection limits (S/N = 3) and quantitation limits (S/N = 10) range from 0.05 to 0.92 μg/mL and 0.17 to 3.06 μg/mL, respectively. The proposed method has not only been successfully applied to the separation and determination of CPT alkaloids but also showed that IL seemed to be a promising additive in CZE separation.  相似文献   

13.
Crystal Structures of „Supramolecular”︁ Benzo‐18‐crown‐6 Potassium Tetrathiocyanato Metallates: A Dimeric Complex {[K(Benzo‐18‐crown‐6)]2[Hg(SCN)4]}2 and Two Isomeric Complexes [K(Benzo‐18‐crown‐6)][Cd(SCN)3] Containing Trithiocyanato Cadmate Anions with Chain Structures By reaction of potassium thiocyanatomercurate(II) complexes with benzo‐18‐crown‐6 (2,3‐benzo‐1,4,7,10,13,16‐hexaoxacyclooctadec‐2‐ene) crystals of {[K(benzo‐18‐crown‐6)]2[Hg(SCN4)]}2 ( 1 ) were obtained. 1 crystallizes monoclinic, space group P21/n (non‐standard setting of P21/c), a = 1737.35(2), b = 1377.16(2), c = 1984.12(3) pm, β = 100.637(1)°, Z = 2. With potassium tetrathiocyanatocadmate(II) two modifications of a complex [K(benzo‐18‐crown‐6)][Cd(SCN)3] ( 2 , 3 ), of different symmetry were formed. 2 crystallizes monoclinic, P21/c, a = 1158,31(3), b = 1096,55(2), c = 2028,46(2) pm, β = 99,5261(2)°, Z = 4, 3  orthorhombic, P21cn, a = 1105,95(3), b = 1413,07(4), c = 1617,10(5) pm, Z = 4. 1 has a dimeric structure, built up from a dication K2(benzo‐18‐crown‐6)2]2+ and two [K(benzo‐18‐crown‐6)]+ cations, which are bridged by two [Hg(SCN)4]2– anions. In 2 and 3 triply bridged infinite [{Cd(SCN)3}n] zigzag chains, stretching along screw axes, are to be found as anions. In 2 these chains exist in two conformations related by inversion symmetry, whereas in 3 only one form can be found. [K(benzo‐18‐crown‐6)]+ cations are linked to the anion chains via K · · · S interactions of different lengths.  相似文献   

14.
RP high‐performance liquid chromatographic methods were developed for the enantioseparation of eleven unusual β2‐homoamino acids. The underivatized analytes were separated on a chiral stationary phase containing (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as chiral selector. The effects of organic (alcoholic) and acidic modifiers, the mobile phase composition and temperature on the separation were investigated. The structures of the substituents in the α‐position of the analytes substantially influenced the retention and resolution. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers.  相似文献   

15.
《中国化学》2017,35(7):1037-1042
Three new chiral stationary phases (CSPs ) for high‐performance liquid chromatography were prepared from R ‐(3,3'‐halogen substituted‐1,1'‐binaphthyl)‐20‐crown‐6 (halogen = Cl, Br and I). The experimental results showed that R ‐(3,3'‐dibromo‐1,1'‐binaphthyl)‐20‐crown‐6 ( CSP ‐1 ) possesses more prominent enantioselectivity than the two other halogen‐substituted crown ether derivatives. All twenty‐one α ‐amino acids have different degrees of separation on R ‐(3,3'‐dibromo‐1,1'‐binaphthyl)‐20‐crown‐6‐based CSP ‐1 at room temperature. The enantioselectivity of CSP ‐1 is also better than those of some commercial R ‐(1,1'‐binaphthyl)‐20‐crown‐6 derivatives. Both the separation factors (α ) and the resolution (R s) are better than those of commercial crown ether‐based CSPs [CROWNPAK CR (+) from Daicel] under the same conditions for asparagine, threonine, proline, arginine, serine, histidine and valine, which cannot be separated by commercial CR (+). This study proves the commercial usefulness of the R ‐(3,3'‐dibromo‐1,1'‐binaphthyl)‐20‐crown‐6 chiral stationary phase.  相似文献   

16.
Herein we present the enantioseparation of 10 cardiovascular agents and six bronchiectasis drugs including propranolol, carteolol, metoprolol, atenolol, pindolol, esmolol, bisoprolol, bevantolol, arotinolol, sotalol, clenbuterol, procaterol, bambuterol, tranterol, salbutamol and terbutaline sulfate using carboxymethyl‐β ‐cyclodextrin (CM‐β ‐CD) as chiral selector. To our knowledge, there is no literature about using CM‐β ‐CD for separating carteolol, esmolol, bisoprolol, bevantolol, arotinolol, procaterol, bambuterol and tranterol. During the course of work, changes in pH, CM‐β ‐CD concentration, buffer type and concentration were studied in relation to chiral resolution. Excellent enantiomeric separations were obtained for all 16 compounds, especially for procaterol. An impressive resolution value, up to 17.10, was obtained. In particular, most of them achieved rapid separations within 20 min. Given the fact that enantioseparation results rely on analytes' structural characters, the possible separation mechanisms were discussed. In addition, in order to obtain faster separation for propranolol enantiomers in practical application, the effective length of capillary was innovatively shortened from 45 to 30 cm. After the validation, the method was successfully applied to the enantiomeric purity determination of propranolol in the formulation of drug substances.  相似文献   

17.
A simple and inexpensive high performance capillary electrophoresis (HPCE) was applied to separate five benzoic acid compounds simultaneously. The investigation was carried out by micellar electrokinetic capillary chromatography (MECC). To avoid a time‐consuming and tedious procedure, orthogonal experimental design OA9 (34) for separation experiments was applied to find the optimal conditions in terms of the resolution and analytical time. The best conditions for separation were obtained using a 20 mM borax and 30 mM sodium dodecyl sulfate (SDS) buffer (pH 9.8) containing 2 mM β‐CD and 4% methanol (v/v). Online UV detection was performed at 250 nm. A voltage of 16 kV was applied and the temperature was controlled at 25 °C. Injection was performed for 5 s. The method was validated for the quantification of benzoic acid, salicylic acid and ortho‐aminobenzoic acid in Radix Isatidis, a traditional plant medicine with removal of endotoxin. The separation and determination were satisfactory and quick.  相似文献   

18.
A poly(dibenzo‐18‐crown‐6) was used as a new solid‐phase extraction material for the selective enrichment of phosphopeptides. Isolation of phosphopeptides was achieved based on specific ionic interactions between poly(dibenzo‐18‐crown‐6) and the phosphate group of phosphopeptides. Thus, a method was developed and optimized, including loading, washing and elution steps, for the selective enrichment of phosphopeptides. To assess this potential, tryptic digest of three proteins (α‐ casein, β‐casein and ovalbumin) was applied on poly(dibenzo‐18‐crown‐6). The nonspecific products were removed by centrifugation and washing. The spectrometric analysis was performed using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Highly selective enrichment of both mono‐ and multiphosphorylated peptides was achieved using poly(dibenzo‐18‐crown‐6) as solid‐phase extraction material with minimum interference from nonspecific compounds. Furthermore, evaluation of the efficiency of the poly(dibenzo‐18‐crown‐6) was performed by applying the digest of egg white. Finally, quantum mechanical calculations were performed to calculate the binding energies to predict the affinity between poly(dibenzo‐18‐crown‐6) and various ligands. The newly identified solid‐phase extraction material was found to be a highly efficient tool for phosphopeptide recovery from tryptic digest of proteins.  相似文献   

19.
A practical chiral CE method, using sulfated‐β‐CD as chiral selector, was developed for the enantioseparation of glycopyrrolate containing two chiral centers. Several parameters affecting the separation were studied, including the nature and concentration of the chiral selectors, BGE pH, buffer type and concentration, separation voltage, and temperature. The separation was carried out in an uncoated fused‐silica capillary of (effective length 40 cm) × 50 μm id with a separation voltage of 20 kV using 30 mM sodium phosphate buffer (pH 7.0, adjusted with 1 M sodium hydroxide) containing 2.0% w/v sulfated‐β‐CD at 25°C. Finally, the method for determining the enantiomeric impurities of RS‐glycopyrrolate was proposed. The method was further validated with respect to its specificity, linearity range, accuracy and precision, LODs, and quantification in the expected range of occurrence for the isomeric impurities (0.1%).  相似文献   

20.
The enantio‐separations of eight 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs (2‐APA NSAIDs) were established using reversed‐phase high‐performance liquid chromatography with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as chiral mobile phase additive for studying the stereoselective skin permeation of suprofen, ketoprofen, naproxen, indoprofen, fenoprofen, furbiprofen, ibuprofen and carprofen. The effects of the mobile phase composition, concentration of HP‐β‐CD and column temperature on retention and enantioselective separation were investigated. With 2‐APA NSAIDs as acidic analytes, the retention times and resolutions of the enantiomers were strongly related to the pH of the mobile phase. In addition, both the concentration of HP‐β‐CD and temperature had a great effect on retention time, but only a slight or almost no effect on resolutions of the analytes. Enantioseparations were achieved on a Shimpack CLC‐ODS (150 × 4.6 mm i.d., 5 μm) column. The mobile phase was a mixture of methanol and phosphate buffer (pH 4.0–5.5, 20 mM) containing 25 mM HP‐β‐CD. This method was flexible, simple and economically advantageous over the use of chiral stationary phase, and was successfully applied to the enantioselective determination of the racemic 2‐APA NSAIDs in an enantioselective skin permeation study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号